Skip to main content

Polyamine Catabolism in Plants

  • Chapter
  • First Online:
Polyamines

Abstract

The copper-dependent amine oxidases (CuAOs) and flavin-containing polyamine oxidases (PAOs) are involved in polyamine (PA) catabolic processes. Studies on plant CuAOs are still incomplete, whereas research on plant PAOs has advanced significantly in the past decade. The maize PAO, the best studied plant PAO, and the barley PAOs were shown to catalyze PAs in a terminal catabolic pathway. Therefore, plant PAOs were assumed to have terminal catabolic activity, which differs from the back-conversion activity of mammalian PAOs. However, plant PAOs that have back-conversion activity are now reported. Here, studies on PAOs from the two model species Arabidopsis thaliana and Oryza sativa are compiled, and research on CuAOs is updated. Our current understanding of the roles of PAOs and CuAOs in plant development and defense responses is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcázar R, Altabella T, Marco F et al (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta (Berl) 231:1237–1249

    Article  Google Scholar 

  • Angelini R, Bragaloni M, Federico R et al (1993) Involvement of polyamines, diamine oxidase and peroxidase in resistance of chickpea to Ascochyta rabiei. J Plant Physiol 142:704–709

    Article  CAS  Google Scholar 

  • Angelini R, Federico R, Bonfante P (1995) Maize polyamine oxidase: antibody production and ultra structural localization. J Plant Physiol 146:686–692

    Article  Google Scholar 

  • Angelini R, Cona A, Federico R et al (2010) Plant amine oxidases “on the move”: an update. Plant Physiol Biochem 48:560–564

    Article  CAS  PubMed  Google Scholar 

  • Antognoni F, Bagni N (2008) Bis(guanylhydrazones) negatively affect in vitro germination of kiwifruit pollen and alter the endogenous polyamine pool. Plant Biol 10:334–341

    Article  CAS  PubMed  Google Scholar 

  • Bagni N, Adamo P, Serafini-Fracassini D et al (1981) RNA, proteins and polyamines during tube growth in germinating apple pollen. Plant Physiol 68:727–730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bassard J-E, Ullmann P, Bernier F, Werck-Reichhart D (2010) Phenolamides: bridging polyamines to the phenolic metabolism. Phytochemistry 71:1808–1824

    Article  CAS  PubMed  Google Scholar 

  • Casero RA Jr, Pegg AE (1993) Spermidine/spermine N 1-acetyltransferase: the turning point in polyamine metabolism. FASEB J 7:653–661

    CAS  PubMed  Google Scholar 

  • Cervelli M, Cona A, Angelini R et al (2001) A barley polyamine oxidase isoform with distinct structural features and subcellular localization. Eur J Biochem 268:3816–3830

    Article  CAS  PubMed  Google Scholar 

  • Cervelli M, Polticelli F, Federico R, Mariottini P (2003) Heterologous expression and characterization of mouse spermine oxidase. J Biol Chem 278:5271–5276

    Article  CAS  PubMed  Google Scholar 

  • Cervelli M, Caro OD, Penta AD et al (2004) A novel C-terminal sequence from barley polyamine oxidase is a vacuolar sorting signal. Plant J 40:410–418

    Article  CAS  PubMed  Google Scholar 

  • Cervelli M, Bianchi M, Cona A et al (2006) Barley polyamine oxidase isoforms 1 and 2, a peculiar case of gene duplication. FEBS J 273:3990–4002

    Article  CAS  PubMed  Google Scholar 

  • Cona A, Rea G, Angelini R et al (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88

    Article  CAS  PubMed  Google Scholar 

  • Dawkes HC, Phillips SEV (2001) Copper amine oxidase: cunning cofactor and controversial copper. Curr Opin Struct Biol 11:666–673

    Article  CAS  PubMed  Google Scholar 

  • Federico R, Cona A, Angelini R et al (1990) Characterization of maize polyamine oxidase. Phytochemistry 29:2411–2414

    Article  CAS  PubMed  Google Scholar 

  • Federico R, Angelini R (1991) Polyamine catabolism in plants. In: Slocum RD, Flores HE (eds) Biochemistry and physiology of polyamines in plants. CRC, pp 41–56

    Google Scholar 

  • Federico R, Ercolini L, Laurenzi M, Angelini R (1996) Oxidation of acetylpolyamines by maize polyamine oxidase. Phytochemistry 43:339–341

    Article  CAS  Google Scholar 

  • Fincato P, Moschou PN, Spedaletti V et al (2011) Functional diversity inside the Arabidopsis polyamine oxidase gene family. J Exp Bot 62:1155–1168

    Article  CAS  PubMed  Google Scholar 

  • Fincato P, Moschou PN, Ahou A et al (2012) The members of Arabidopsis thaliana PAO gene family exhibit distinct tissue- and organ-specific expression pattern during seedling growth and flower development. Amino Acids 42:831–841

    Article  CAS  PubMed  Google Scholar 

  • Handa AK, Mattoo AK (2010) Differential and functional interactions emphasize the multiple roles of polyamines in plants. Plant Physiol Biochem 48:540–546

    Article  CAS  PubMed  Google Scholar 

  • Kamada-Nobusada T, Hayashi M, Fukazawa M et al (2008) A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in Arabidopsis thaliana. Plant Cell Physiol 49:1272–1282

    Article  CAS  PubMed  Google Scholar 

  • Kusano T, Berberich T, Tateda C et al (2008) Polyamines: essential factors for growth and survival. Planta (Berl) 228:367–381

    Article  CAS  Google Scholar 

  • Liu T, Kim DW, Niitsu M et al (2014a) Oryza sativa polyamine oxidase 1 back-converts tetraamines, spermine and thermospermine, to spermidine. Plant Cell Rep 33:143–151

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Kim DW, Niitsu M et al (2014b) Polyamine oxidase 7 is a terminal catabolism-type enzyme in Oryza sativa and is specifically expressed in anthers. Plant Cell Physiol 55:1110–1122

    Google Scholar 

  • Marina M, Maiale SJ, Rossi FR et al (2008) Apoplastic polyamine oxidation plays different roles in local responses of tobacco to infection by the necrotrophic fungus Sclerotinia sclerotiorum and the biotrophic bacterium Pseudomonas viridiflava. Plant Physiol 147:2164–2178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marina M, Sirera FV, Ramble JL et al (2013) Thermospermine catabolism increases Arabidopsis thaliana resistance to Pseudomonas viridiflava. J Exp Bot 64:1393–1402

    Article  CAS  PubMed  Google Scholar 

  • Mattoo AK, Minocha SC, Minocha R, Handa AK (2010) Polyamines and cellular metabolism in plants: transgenic approaches reveal different responses to diamine putrescine versus higher polyamines spermidine and spermine. Acids 38:405–413

    Google Scholar 

  • Medda R, Padiglia A, Flores G (1995a) Plant copper-amine oxidases. Phytochemistry 39:1–9

    Article  CAS  Google Scholar 

  • Medda R, Padiglia A, Pedersen JZ et al (1995b) The reaction mechanism of copper amine oxidase: detection of intermediates by the use of substrates and inhibitors. Biochemistry 34:16375–16381

    Article  CAS  PubMed  Google Scholar 

  • Mitsuya Y, Takahashi Y, Berberich T et al (2009) Spermine signaling plays a significant role in the defense response of Arabidopsis thaliana to cucumber mosaic virus. J Plant Physiol 166:626–643

    Article  CAS  PubMed  Google Scholar 

  • Møller SG, McPherson MJ (1998) Developmental expression and biochemical analysis of the Arabidopsis atao1 gene encoding an H2O2-generating diamine oxidase. Plant J 13:781–791

    Article  PubMed  Google Scholar 

  • Moschou PN, Sanmartin M, Andriopoulou AH et al (2008a) Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol 147:1845–1857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moschou PN, Paschalidis KA, Delis ID et al (2008b) Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20:1708–1724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moschou PN, Roubelakis-Angelakis KA (2014) Polyamines and programmed cell death. J Exp Bot 65:1285–1296

    Google Scholar 

  • Moschou PN, Wu J, Cona A, Tavladoraki P, Angelini R, Roubelakis-Angelakis KA (2012) The polyamines and their catabolic products are significant players in the turnover of nitrogenous molecules in. J Exp Bot 63:5003–5015

    Google Scholar 

  • Naka Y, Watanabe K, Sagor GHM, Niitsu M, Pillai A et al (2010) Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress. Plant Physiol Biochem 48:527–533

    Article  CAS  PubMed  Google Scholar 

  • Ono Y, Kim DW, Watanabe K, Sasaki A, Niitsu M et al (2012) Constitutively and highly expressed Oryza sativa polyamine oxidases localize in peroxisomes and catalyzed polyamine back conversion. Amino Acids 42:867–876

    Google Scholar 

  • Planas-Portell J, Gallart M, Tiburcio AF et al (2013) Copper-containing amine oxidases contribute to terminal polyamine oxidation in peroxisomes and apoplast of Arabidopsis thaliana. BMC Plant Biol 13:109

    Article  PubMed Central  PubMed  Google Scholar 

  • Polticelli F, Salvi D, Mariottini P et al (2012) Molecular evolution of the polyamine oxidase gene family in Metazoa. BMC Evol Biol 12:90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Radova A, Sebela M, Galuszka P et al (2001) Barley polyamine oxidase: characterization and analysis of the co-factor and the N-terminal amino acid sequence. Phytochem Anal 12:166–173

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez AA, Maiale SJ, Menéndez AB, Ruiz OA (2009) Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress. J Exp Bot 60:4249–4262

    Article  PubMed  Google Scholar 

  • Sagor GHM, Takahashi H, Niitsu M et al (2012) Exogenous thermospermine has an activity to induce a subset of the defense genes and restrict cucumber mosaic virus multiplication in Arabidopsis thaliana. Plant Cell Rep 31:1227–1232

    Article  CAS  PubMed  Google Scholar 

  • Song J, Nada K, Tachibana S (2002) Suppression of S-adenosylmethionine decarboxylase activity is a major cause for high-temperature inhibition of pollen germination and tube growth in tomato (Lycopersicon esculentum Mill.). Plant Cell Physiol 43:619–627

    Article  CAS  PubMed  Google Scholar 

  • Su GX, Yu BJ, Zhang WH, Liu YL (2007) Higher accumulation of γ-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. roots. Plant Physiol Biochem 45:560–566

    Article  Google Scholar 

  • Takahashi Y, Berberich T, Miyazaki A et al (2003) Spermine signalling in tobacco: activation of mitogen-activated protein kinases by spermine is mediated through mitochondrial dysfunction. Plant J 36:820–829

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Uehara Y, Berberich T et al (2004) A subset of the hypersensitive response marker genes including HSR203J is downstream target of a spermine-signal transduction pathway in tobacco. Plant J 40:586–595

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Cong R, Sagor GHM, Niitsu M, Berberich T, Kusano T (2010) Characterization of five polyamine oxidase isoforms in Arabidopsis thaliana. Plant Cell Rep 29:955–965

    Article  CAS  PubMed  Google Scholar 

  • Takano A, Kakehi JI, Takahashi T (2012) Thermospermine is not a minor polyamine in the plant kingdom. Plant Cell Physiol 53:606–616

    Article  CAS  PubMed  Google Scholar 

  • Tavladoraki P, Shinina ME, Cecconi F et al (1998) Maize polyamine oxidase: primary structure from protein and cDNA sequencing. FEBS Lett 426:62–66

    Article  CAS  PubMed  Google Scholar 

  • Tavladoraki P, Rossi MN, Saccuti G et al (2006) Heterologous expression and biochemical characterization of a polyamine oxidase from Arabidopsis involved in polyamine back conversion. Plant Physiol 141:1519–1532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tipping AJ, McPherson MJ (1995) Cloning and molecular analysis of the pea seedling copper amine oxidase. J Biol Chem 270:16939–16946

    Article  CAS  PubMed  Google Scholar 

  • Tisi A, Federico R, Moreno S et al (2011) Perturbation of polyamine catabolism can strongly affect root development and xylem differentiation. Plant Physiol 157:200–215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T et al (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    Article  CAS  PubMed  Google Scholar 

  • Vujcic S, Diegelman P, Bacchi CJ et al (2002) Identification and characterization of a novel flavin-containing spermine oxidase of mammalian cell origin. Biochem J 367:665–675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walters D (2003) Resistance to plant pathogens: possible roles for free polyamines and polyamine catabolism. New Phytol 159:109–115

    Article  CAS  Google Scholar 

  • Walters D, Cowley T, Mitchell A (2002) Methyl jasmonate alters polyamine metabolism and induces systemic protection against powdery mildew infection in barley seedlings. J Exp Bot 53:747–756

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Devereux W, Woster PM et al (2001) Cloning and characterization of a human polyamine oxidase that is inducible by polyamine analogue exposure. Cancer Res 61:5370–5373

    CAS  PubMed  Google Scholar 

  • Wimalasekera R, Tebartz F, Scherer GFE (2011a) Polyamine, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci 181:593–603

    Article  CAS  PubMed  Google Scholar 

  • Wimalasekera R, Villar C, Begum T et al (2011b) Copper amine oxidase1 (CuAO1) of Arabidopsis thaliana contributes to abscisic acid- and polyamine-induced nitric oxide biosynthesis and abscisic acid signal transduction. Mol Plant 4:663–678

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Yankovskaya V, McIntire WS (2003) Cloning, sequencing, and heterologous expression of the murine peroxisomal flavoprotein, N1-acetylated polyamine oxidase. J Biol Chem 278:20514–20525

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Shang Z, Wu J et al (2010) Spermidine-oxidase-derived H2O2 regulates pollen plasma membrane hyperpolarization-activated Ca2+-permeable channels and pollen tube growth. Plant J 63:1042–1053

    Article  CAS  PubMed  Google Scholar 

  • Yamakawa H, Kamada H, Satoh M et al (1998) Spermine is a salicylate-independent endogenous inducer for both tobacco acidic pathogenesis-related proteins and resistance against tobacco mosaic virus infection. Plant Physiol 118:213–1222

    Article  Google Scholar 

  • Yoda H, Yamaguchi Y, Sano H (2003) Induction of hypersensitive response by hydrogen peroxide produced through polyamine degradation in tobacco plants. Plant Physiol 132:1973–1981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoda H, Hiroi Y, Sano H (2006) Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells. Plant Physiol 142:193–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonobu Kusano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kusano, T., Kim, D.W., Liu, T., Berberich, T. (2015). Polyamine Catabolism in Plants. In: Kusano, T., Suzuki, H. (eds) Polyamines. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55212-3_6

Download citation

Publish with us

Policies and ethics