Skip to main content

Oldest Fossil Records of Marine Protists and the Geologic History Toward the Establishment of the Modern-Type Marine Protist World

  • Chapter
Marine Protists

Abstract

The oldest marine protist fossil goes back 1.8 Ga (Statherian, Paleoproterozoic), and the oldest dinosterane biomarkers 1.6 Ga (Calymmian, Mesoproterozoic). The probable heterotrophic agglutinated microfossil appeared when marine metazoans appeared in the Ediacaran. Multichambered foraminifers appeared around the start of biomineralization in Small Shelly Fossils in the early Cambrian. The first fossilizable radiolarian polycystine is likely to have appeared in the period of the Cambrian Explosion. After the initial appearance period, the emergence of fossilizable skeleton formative ability was concentrated in five short geological time intervals: (1) the Middle to Late Devonian for calcareous benthic foraminifers; (2) the Carnian to the Rhaetian (Triassic) for the “switching on” of fossilizable dinoflagellate cysts, nannoliths, coccoliths and calcareous cysts, and probably the molecular appearance of diatoms; (3) the Toarcian–Aalenian Ages for diversified dinoflagellates and coccolithophores, the establishment of symbiosis in radiolarian Acantharia and the appearance of planktic lifestyle in foraminifers; (4) the Albian–Maastrichtian Ages for the rapid accumulation of coccolithophores, the start of skeletogenesis both in silicoflagellates and marine centric diatoms, molecular appearance of both araphid and raphid diatoms, and the appearance of fossilizable araphid diatoms; and (5) the middle to late Eocene for the appearance of fossilizable raphid diatoms and radiolarian colonial collodarians and the continuous occurrences of ebridians. The establishment of the modern-type marine protist world was concluded in the late Eocene by the appearance of collodarians, the continuous occurrences of ebridians, and the substituted silicon precipitation marine protists as diatoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adl SM et al (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493

    Article  PubMed Central  PubMed  Google Scholar 

  • Algeo TJ et al (2013) Plankton and productivity during the Permian–Triassic boundary crisis: an analysis of organic carbon fluxes. Global Planet Change 105:52–67

    Article  Google Scholar 

  • Allard WG et al (2001) Tetra-unsaturated sesterterpenoids (Haslenes) from Haslea ostrearia and related species. Phytochemistry 56:795–800

    Article  CAS  PubMed  Google Scholar 

  • Alverson AJ et al (2007) Bridging the Rubicon: phylogenetic analysis reveals repeated colonizations of marine and fresh waters by thalassiosiroid diatoms. Mol Phylogenet Evol 45:193–210

    Article  CAS  PubMed  Google Scholar 

  • Belt ST et al (2000) Highly branched isoprenoids (HBIs): identification of the most common and abundant sedimentary isomers. Geochim Cosmochim Acta 64:3839–3851

    Article  CAS  Google Scholar 

  • Belt ST et al (2001a) Identification of a C25 highly branched isoprenoid triene in the freshwater diatom Navicula sclesvicensis. Org Geochem 32:1169–1172

    Article  CAS  Google Scholar 

  • Belt ST et al (2001b) C25 highly branched isoprenoid alkenes in planktonic diatoms of the Pleurosigma genus. Org Geochem 32:1271–1275

    Article  CAS  Google Scholar 

  • Belt ST et al (2007) A novel chemical fossil of palaeo sea ice: IP25. Org Geochem 38:16–27

    Article  CAS  Google Scholar 

  • Bignot G (1985) Elements of micropalaeontology. Springer, London

    Google Scholar 

  • Billard C, Inouye I (2004) What is new in coccolithophore biology? In: Thierstein HR, Young JR (eds) Coccolithophores –from molecular processes to global impact. Springer, Tokyo, pp 1–29

    Google Scholar 

  • Blank CE (2013) Origin and early evolution of photosynthetic eukaryotes in freshwater environments: reinterpreting Proterozoic paleobiology and biogeochemical processes in light of trait evolution. J Phycol 49:1040–1055

    Article  CAS  Google Scholar 

  • Blumenberg M et al (2004) Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci U S A 103:14421–14426

    Google Scholar 

  • Bohaty SM, Harwood DM (2000) Ebridian and silicoflagellate biostratigraphy from Eocene McMurdo Erratics and the Southern Ocean. Antarct Res Ser 76:99–159

    Article  Google Scholar 

  • Boon JJ et al (1978) Organic geochemical analyses of core samples from Site 362, Walvis Ridge, DSDP Leg 40. In: Participants aboard Glomar Challenger for Legs 38, 39, 40, and 41 (ed) Initial reports of the Deep Sea Drilling Project, supplement to volumes 38, 39, 40, and 41. U.S. Government Printing Office, Washington, DC, pp 627–637

    Google Scholar 

  • Boudagher-Fadel MK (2013) Biostratigraphic and geological significance of planktonic foraminifera, 2nd edn. OVPR UCL, London

    Book  Google Scholar 

  • Bown PR, Young JR (1998) Introduction. In: Bown RP (ed) Calcareous nannofossil biostratigraphy. Kluwer Academic Publishers, London, pp 1–15

    Chapter  Google Scholar 

  • Brasier MD et al (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81

    Article  PubMed  Google Scholar 

  • Brassell SC (1993) Applications of biomarkers for delineating marine paleoclimatic fluctuations during the Pleistocene. In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum Press, New York, pp 699–737

    Chapter  Google Scholar 

  • Brassell SC et al (1986) Molecular stratigraphy: a new tool for climatic assessment. Nature 320:129–133

    Article  CAS  Google Scholar 

  • Bray PS, Anderson KB (2009) Identification of Carboniferous (320 million years old) Class Ic Amber. Science 326:132–134

    Article  CAS  PubMed  Google Scholar 

  • Brocks JJ et al (1999) Archean molecular fossils and the early rise of Eukaryotes. Science 285:1033–1036

    Article  CAS  PubMed  Google Scholar 

  • Brocks JJ et al (2003) A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin Western Australia. Geochim Cosmochim Acta 67:4321–4335

    Article  CAS  Google Scholar 

  • Brown JW, Sorhannus U (2010) A molecular genetic timescale for the diversification of autotrophic Stramenopiles (Ochrophyta): substantive underestimation of putative fossil ages. PLoS One 5:e12759

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Burgess SD et al (2014) High-precision timeline for Earth’s most severe extinction. Proc Natl Acad Sci U S A 111:3316–3321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Calandra F (1964) Sur un presume dinoflagellé Arpylorus nov. gen., du Gothlandien de Tunisie. Compt Rend l’Acad Sci Paris 258:4112–4114

    Google Scholar 

  • Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33:1–36

    Article  CAS  Google Scholar 

  • Caron M, Homewood P (1983) Evolution of early planktic foraminifers. Mar Micropal 7:453–462

    Article  Google Scholar 

  • Cavalier-Smith T (2006) Cell evolution and Earth history: stasis and revolution. Phil Trans R Soc B 361:969–1006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang K-H, Park S-O (2008) Early Cretaceous tectonism and diatoms in Korea. Acta Geol Sin 82:1179–1184

    Article  Google Scholar 

  • Chang K-H et al (2003) Recent advances in the Cretaceous stratigraphy of Korea. J Asian Earth Sci 21:937–948

    Article  Google Scholar 

  • Chen M et al (2010) A red-shifted chlorophyll. Science 329:1318–1319

    Article  CAS  PubMed  Google Scholar 

  • Chen M et al (2012) A cyanobacterium that contains chlorophyll f – a red-absorbing photopigment. FEBS Lett 586:3249–3254

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y-N (1986) Taxonomic studies on upper Paleozoic Radiolaria. Nat Mus Natur Sci, Spec Publ 1:1–213

    Google Scholar 

  • Clémence M-E, Hart MB (2013) Proliferation of Oberhauserellidae during the recovery following the Late Triassic extinction: paleoecological implications. J Paleontol 87:1004–1015

    Article  Google Scholar 

  • Culver SJ (1991) Early Cambrian foraminifera from West Africa. Science 254:689–691

    Article  CAS  PubMed  Google Scholar 

  • Dalton LA et al (2013) Preservational and morphological variability of assemblages of agglutinated eukaryotes in Cryogenian Cap Carbonates of Northern Namibia. Palaios 28:67–79

    Article  Google Scholar 

  • De Gregorio BT et al (2009) Biogenetic origin for Earth’s oldest putative microfossils. GSA Bull 37:631–634

    Google Scholar 

  • de Leeuw JW et al (1980) On the occurrence and structural identification of long chain unsaturated ketones and hydrocarbons in sediments. In: Douglas AG, Maxwell JR (eds) Advances in organic geochemistry 1979. Pergamon, Oxford, pp 211–217

    Google Scholar 

  • de Rosa M, Gambacorta A (1986) Lipid biogenesis in archaebacteria. Syst Appl Microbiol 7:278–285

    Article  Google Scholar 

  • De Wever P et al (2001) Radiolarians in the sedimentary record. Gordon and Breach Science Publishers, Amsterdam

    Google Scholar 

  • Decelle J et al (2012) An original mode of symbiosis in open ocean plankton. Proc Natl Acad Sci U S A 104:18000–18005

    Article  Google Scholar 

  • Deep Sea Drilling Project (1968–1984) DSDP initial reports. http://www.deepseadrilling.org/i_reports.htm. Accessed 16 Sept 2014

  • Dzki J, Mazurek D (2013) Affinities of the alleged earliest Cambrian gastropod Aldanella. Can J Zool 91:914–923

    Article  Google Scholar 

  • Expedition Scientists (2005) North Atlantic Climate 2. IODP Prel Rept 306: doi:10.2204/IODP.PR.306.2005

  • Falkowski PG et al (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360

    Article  CAS  PubMed  Google Scholar 

  • Farrimond P, Eglintron G, Brassell SC (1986) Alkenones in Cretaceous black shales, Blake-Bahama Basin, western North Atlantic. Org Geochem 10:897–903

    Article  CAS  Google Scholar 

  • Fensome RA et al (1999) Dinoflagellate phylogeny revisited: reconciling morphological and molecular based phylogenies. Grana 38:66–80

    Article  Google Scholar 

  • Finger KL et al (2008) Foraminifera used in the construction of Miocene polychaete worm tubes, Monterey Formation, California, USA. J Foraminiferal Res 38:277–291

    Article  Google Scholar 

  • Gardin S et al (2012) Where and when the earliest coccolithophores? Lethaia 45:507–523

    Article  Google Scholar 

  • Gaucher C, Sprechmann P (1999) Upper Vendian skeletal fauna of the Arroyo del Soldado Group, Uruguay. Beringeria 23:55–91

    Google Scholar 

  • Gersonde R, Harwood DM (1990) Lower Cretaceous diatoms from ODP Leg 113 Site 693 (Wedel Sea). Part 1: Vegetative cells. In: Baker PR et al (eds) Proceedings of the Ocean Drilling Program, scientific results, vol 113. Ocean Drilling Program, College Station, pp 365–402

    Google Scholar 

  • Girard V et al (2008) Evidence for marine microfossils from amber. Proc Natl Acad Sci U S A 105:17426–17429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Girard V et al (2009) Exceptional preservation of marine diatoms in upper Albian amber. Geology 37:83–86

    Article  CAS  Google Scholar 

  • Girard V et al (2011) Protist-like inclusions in amber, as evidenced by Charentes amber. Eur J Protistol 47:59–66

    Article  PubMed  Google Scholar 

  • Gladenkov AY (2012) Middle Eocene diatoms from the marine Paleogene stratigraphic key section of northeast Kamchatka. Aust J Earth Sci 105:72–76

    Google Scholar 

  • Gooday AJ et al (2008) New organic-walled Foraminifera (Protista) from the ocean’s deepest point, the Challenger Deep (western Pacific Ocean). Zool J Linn Soc 153:399–423

    Article  Google Scholar 

  • Hargraves PE (2002) The ebridian flagellates Ebria and Hermesinum. Plankton Biol Ecol 49:9–16

    Google Scholar 

  • Hart MB et al (2003) The search for the origin of the planktic foraminifera. J Geol Soc Lond 160:341–343

    Article  Google Scholar 

  • Harwood DM (1988) Upper Cretaceous and lower Paleocene diatom and silicoflagellate biostratigraphy of Seymour Island, eastern Antarctic Peninsula. Geol Soc Am Mem 169:55–130

    Article  Google Scholar 

  • Holzmann M et al (2003) Freshwater foraminiferns revealed by analysis of environmental DNA samples. J Eukaryot Microbiol 50:135–139

    Article  PubMed  Google Scholar 

  • Hoppenrath M, Leander BS (2006) Ebriid phylogeny and the expansion of the Cercozoa. Protist 157:279–290

    Article  CAS  PubMed  Google Scholar 

  • Hori RS, Yamakita S, Dumitrica P (2009) Late Triassic phaeodarian Radiolaria from the Northern Chichibu Belt, Shikoku, Japan. Paleontol Res 13:54–63

    Article  Google Scholar 

  • Howe AT et al (2011) Novel cultured protists identify deep-branching environmental DNA clades of Cercozoa: new genera Tremula, Micrometopion, Minimassisteria, Nudifila, Peregrinia. Protist 162:332–372

    Article  PubMed  Google Scholar 

  • Hüneke H, Henrich R (2011) Pelagic sedimentation in modern and ancient oceans. In: Hüneke H, Mulder T (eds) Deep-sea sediments. Developments in sedimentology, vol 63. Elsevier, Amsterdam, pp 215–351

    Chapter  Google Scholar 

  • Huntley JW et al (2006) 1.3 billion years of acritarch history: an empirical morphospace approach. Precambrian Res 144:52–68

    Article  CAS  Google Scholar 

  • Integrated Ocean Drilling Program (2003–2013) IODP Scientific Publications. http://www.iodp.org/scientific-publications. Accessed 16 Sept 2014

  • International Commission on Stratigraphy (2014) The geologic timescale, the version 2014/02. http://www.stratigraphy.org. Accessed 16 Sept 2014

  • International Ocean Discovery Program (2014–onwards) IODP Scientific Publications. http://www.iodp.org/scientific-publications. Accessed 16 Sept 2014

  • Isakova TN, Nazarov BB (1986) Stratigrafiya i mikrofauna pozdnego karbona-ranney permi Yuzhnogo Urala. AN SSSR, Ordena Tr Krasnogo Znameni Geol Inst 402:1–183

    Google Scholar 

  • Ishitani Y et al (2011) Multigene phylogenetic analyses including diverse radiolarian species support the “retaria” hypothesis – the sister relationship of radiolaria and foraminifera. Mar Micropaleontol 81:32–42

    Article  Google Scholar 

  • Javaux E (2007) The early eukaryotic fossil record. In: Gáspár J (ed) Eukaryotic membranes and cytoskeleton: origins and evolution. Springer, Amsterdam, pp 1–19

    Chapter  Google Scholar 

  • Javaux E (2011) Early eukaryotes in Precambrian oceans. In: Gargaud M et al (eds) Origins and evolution of life. Cambridge University Press, Cambridge, pp 414–449

    Google Scholar 

  • Kaczmarsk I et al (2005) Molecular phylogeny of selected members of the Order Thalassiosirales (Bacillariophyta) and evolution of the Fultoportula. J Phycol 42:121–138

    Article  Google Scholar 

  • Kamata et al (2007) Late Induan (Dienerian) primitive nassellarians from Arrow Rocks, Northland, New Zealand. GNS Sci Monogr 24:109–116

    Google Scholar 

  • Kaminski MA (2014) The year 2010 classification of the agglutinated foraminifera. Micropaleontology 60:89–108

    Google Scholar 

  • Kaminski MA et al (2008) Revised stratigraphic ranges and the Phanerozoic diversity of agglutinated foraminiferal genera. Grzybowski Found Spec Publ 13:79–106

    Google Scholar 

  • Katsumata H, Shimoyama A (2001) Alkyl and polynuclear aromatic thiophenes in Neogene sediments of the Shinjo Basin, Japan. Geochem J 35:37–48

    Article  CAS  Google Scholar 

  • Kennett JP (1996) Protsessy Okeanskoi Sedimentatsii. Nauka, Moscow. English edition: Lisitzin AP (1978) Oceanic sedimentation, lithology and geochemistry (trans: Woodhiser C). American Geophysical Union, Washington, DC. doi:10.1002/9781118665008

  • Kiessling W et al (1999) Combined radiolarian-ammonite stratigraphy for the Late Jurassic of the Antarctic Peninsula: implications for radiolarian stratigraphy. Geodiversitas 21:687–713

    Google Scholar 

  • Knoll AH (2014) Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb Perpsect Biol 6:a016121

    Google Scholar 

  • Knoll AH et al (2007) The geological succession of primary producers in the ocean. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea. Academic, Amsterdam, pp 133–163

    Chapter  Google Scholar 

  • Kobayashi H (1988) Neogene silicoflagellate biostratigraphy of the Japan Sea costal region, with reference to DSDP Hole 438A. Sci Rept Tohoku Univ 2nd Ser 59:1–98

    Google Scholar 

  • Koga Y et al (1998a) Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Further analysis of lipid component parts. Biosci Biotechnol Biochem 62:230–236

    Article  CAS  Google Scholar 

  • Koga Y et al (1998b) Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent. J Mol Evol 46:54–63

    Article  CAS  PubMed  Google Scholar 

  • Kohnen MEL et al (1990) Origin and diagenetic transformations of C25 and C30 highly branched isoprenoid sulphur compounds: further evidence for the formation of organically bound sulphur during early diagenesis. Geochim Cosmochim Acta 54:3053–3063

    Article  CAS  Google Scholar 

  • Kooistra WHCF et al (2007) The origin and evolution of the diatoms: their adaptation to a planktonic existence. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea. Academic, Amsterdam, pp 207–249

    Chapter  Google Scholar 

  • Korovnikov et al (2013) The biostratigraphic and palaeoenvironmental significance of lower Cambrian (Botomian) trilobites from the Ak-Kaya section of the Altai Mountains (southern Siberia, Russia). Ann Paléontol 99:79–89

    Google Scholar 

  • Krabberød AK et al (2011) Radiolaria divided into Polycystina and Spasmaria in combined 18S and 28S rDNA phylogeny. PLoS One 6, e23526

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lamb DM et al (2009) Evidence for eukaryotic diversification in the ~1800 million-year-old Changzhougou Formation, North China. Precambrian Res 173:93–104

    Article  CAS  Google Scholar 

  • Lazarus DB et al (2009) Radiolarians decreased silicification as an evolutionary response to reduced Cenozoic ocean silica availability. Proc Natl Acad Sci U S A 106:9333–9338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Le Herisse A et al (2012) The end of a myth: Arpylorus antiquus Paleozoic dinoflagellate cyst. Palaios 27:414–423

    Article  Google Scholar 

  • Lejzerowicz F et al (2010) Molecular evidence for widespread occurrence of Foraminifera in soils. Environ Microbiol 12:2518–2526

    Article  CAS  PubMed  Google Scholar 

  • Ling HY (1981) Crassicorisema, a new silicoflagellate genus, from the Southern Oceans and Paleocene silicoflagellate zonation. Trans Palaeontol Soc Jpn NS 121:1–13

    Google Scholar 

  • Ling HY (1985) Early Paleogene silicoflagellates and ebridians from the Arctic Ocean. Trans Proc Palaeontol Soc Jpn NS 138:79–93

    Google Scholar 

  • Ling HY, Lazarus DB (1990) Cretaceous Radiolaria from the Weddell Sea: Leg 113 of the Ocean Drilling Program. In: Baker PR et al (eds) Proceedings of the Ocean Drilling Program, scientific results, vol 113. Ocean Drilling Program, College Station, pp 353–363

    Google Scholar 

  • Liu H et al (2010) A time line of the environmental genetics of the Haptophytes. Mol Biol Evol 27:161–176

    Article  CAS  PubMed  Google Scholar 

  • Loeblich AR, Tappan H (1964) Sarcodina, chiefly “thecamoebians” and foraminiferida. In: Moore RC (ed) Treatise of invertebrate paleontology, part C, protista 2. The Geological Society of America and the University of Kansas Press, Kansas, pp C1–C900

    Google Scholar 

  • Loeblich AR, Tappan H (1988) Foraminiferal genera and their classifications. Van Noslrand Reinhold, New York

    Book  Google Scholar 

  • Loeblich AR et al (1968) Annotated index of fossil and recent silicoflagellates and ebridians with descriptions and illustrations of validly proposed taxa. Geol Soc Am Mem 106:1–319

    Article  Google Scholar 

  • Lucas SG (2013) A new Triassic timescale. New Mexico Mus Natur Hist Sci Bull 61:366–374

    Google Scholar 

  • Lyle et al (2009) Pacific Equatorial Transect. IODP Prel Rept 321. doi:10.2204/iodp.pr.321.2009

  • MacRae RA et al (1996) Fossil dinoflagellate diversity, originations, and extinctions and their significance. Can J Bot 74:1687–1694

    Article  Google Scholar 

  • Malez J (2011) Radiolarian skeletal structures and biostratigraphy in the Early Palaeozoic (Cambrian–Ordovician). Palaeoworld 20:116–133

    Article  Google Scholar 

  • Marlowe IT et al (1984) Long chain unsaturated ketones and esters in living algae and marine sediments. Org Geochem 6:135–141

    Article  CAS  Google Scholar 

  • Marlowe IT et al (1990) Long-chain alkenones and alkyl alkenoates and the fossil coccolith record of marine sediments. Chem Geol 88:349–375

    Article  CAS  Google Scholar 

  • Masure et al (2013) Blowin’ in the wind… 100 Ma old multi-staged dinoflagellate with sexual fusion trapped in amber: marine-freshwater transition. Palaeogeogr Palaeoclimatol Palaeoecol 388:128–144

    Google Scholar 

  • Matsuoka A (1998) Faunal composition of earliest Cretaceous (Berriasian) radiolaria from the Mariana Trench in the western Pacific. News of Osaka Micropaleontologists, Spec Vol 11:165–187

    Google Scholar 

  • McCartney K (2013) A review of past and recent research on Cretaceous silicoflagellates. Phytotaxa 127:190–200

    Article  Google Scholar 

  • McCartney K et al (1990) Enigmatic lower Albian silicoflagellates from ODP Site 693: progenitors of the Order Silicoflagellata? In: Baker PR et al (eds) Proceedings of the Ocean Drilling Program, scientific results, vol 113. Ocean Drilling Program, College Station, pp 427–442

    Google Scholar 

  • McCartney K, Witkowski J, Harwood DM (2010) Early evolution of the silicoflagellates during the Cretaceous. Mar Micropal 77:83–100

    Article  Google Scholar 

  • McCartney K, Witkowski J, Harwood DM (2011) Late Cretaceous silicoflagellate taxonomy and biostratigraphy of the Arctic Margin, Northwest Territories, Canada. Micropaleontology 57:61–86

    Google Scholar 

  • McIlroy D, Green OR, Brasier MD (2001) Palaeobiology and evolution of the earliest agglutinated foraminifera: Platysolenites, Spirosolenites and related forms. Lethaia 34:13–29

    Article  Google Scholar 

  • Medlin LK (2011) A review of the evolution of the diatoms from the origin of the lineage to their populations. In: Seckbach J, Kociolek JP (eds) The diatom world. Springer, Amsterdam, pp 95–118

    Google Scholar 

  • Medlin LK, Fensome RA (2013) Dinoflagellate macroevolution: some considerations based on an integration of molecular, morphological and fossil evidence. In Lewis JM et al (eds) Biological and geological perspectives of dinoflagellates. Micropalaeontology Society, Special Publications. Geological Society, London, pp 263–274

    Google Scholar 

  • Medlin LK, Kaczmarska I (2004) Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia 43:245–270

    Article  Google Scholar 

  • Mikhalevich VI (2013) New insight into the systematics and evolution of the foraminifera. Micropaleontology 59:493–527

    Google Scholar 

  • Miyashita H et al (1996) Chlorophyll d as a major pigment. Nature 383:402

    Article  CAS  Google Scholar 

  • Miyashita H et al (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38:274–281

    Article  CAS  Google Scholar 

  • Moldowan JM et al (1996) Chemostratigraphy reconstruction of biofacies: molecular evidence linking cyst-forming dinoflagellate with pre-Triassic ancestors. Geology 24:159–162

    Article  Google Scholar 

  • Mouravieff N, Bultynck P (1967) Quelques foraminifères du Couvinien et du Frasnien du bord sud du basin de Dinant. Bull Soc Belge Géol 75:153–156

    Google Scholar 

  • Nakamura Y, Suzuki N (2015) Phaeodaria, diverse marine cercozoans of world-wide distribution. In: Ohtsuka et al (eds) Marine protists: diversity and dynamics. Springer, Tokyo, pp 223–249 (this volume)

    Google Scholar 

  • Nestell G et al (2011) The oldest Ordovician foraminifers (Oepikodus evae conodont Zone, Florian) from South America. Geobios 44:601–608

    Article  Google Scholar 

  • Neuendorf KKE, Mehl JP Jr, Jackson JA (eds) (2012) Glossary of geology, 5th edn. American Geoscience Institute, Alexandria

    Google Scholar 

  • Nicoll RS, Foster CB (1999) Late Triassic conodont and palynomorph biostratigraphy and conodont thermal maturation, North West Shelf, Australia. J Aust Geol Geophys 15:101–118

    Google Scholar 

  • Nikolaev SI et al (2004) The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proc Natl Acad Sci U S A 101:8066–8071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Obut OT, Iwata K (2000) Lower Cambrian Radiolaria from the Gorny Altai (southern West Siberia). News Paleontol Stratigr 2–3:33–38

    Google Scholar 

  • Ocampo R et al (1992) Porphyrins from Messel oil shale (Eocene, Germany): structure elucidation, geochemical and biological significance, and distribution as a function of depth. Geochim Cosmochim Acta 56:745–761

    Article  CAS  Google Scholar 

  • Ocean Drilling Program (1985–2002) Initial reports and scientific results. http://www-odp.tamu.edu/publications. Accessed 16 Sept 2014

  • Ogawa Y et al (1996) Silica mineralization of Jurassic/Cretaceous radiolarian chert and claystone from a seamount flank at the Mariana trench oceanward slope. Sci Rep Inst Geosci, Univ Tsukuba, Sec = B, Geol Sci 17:1–24

    Google Scholar 

  • Ohtomo Y et al (2014) Evidence for biogenic graphite in early Archean Isua metasedimentary rocks. Nat Geosci 7:25–28

    Article  CAS  Google Scholar 

  • Onodera J, Takahashi K (2009) Middle Eocene ebridians from the central Arctic Basin. Micropaleontology 55:187–208

    Google Scholar 

  • Open University Course Team (ed) (1989) Ocean chemistry and deep-sea sediments. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Oreshkina TV, Aleksandrova GN (2007) Terminal Paleocene of the Volga middle reaches: biostratigraphy and paleosettings. Stratigr Geol Correl 15:206–230

    Article  Google Scholar 

  • Pang K et al (2013) The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils. Geobiology 11:499–510

    CAS  PubMed  Google Scholar 

  • Pawlowski J, Burki F (2009) Untangling the phylogeny of amoeboid Protists. J Eukaryot Microbiol 56:16–25

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski et al (2013) New supraordinal classification of Foraminifera: molecules meet morphology. Mar Micropaleontol 100:1–10

    Google Scholar 

  • Perch-Nielsen K (1978) Eocene to Pliocene archaeomonads, ebridians, and endoskeletal dinoflagellates from the Norwegian Sea, DSDP Leg 38. In: Participants aboard Glomar Challenger for Legs 38, 39, 40, and 41 (ed) Initial reports of the Deep Sea Drilling Project, supplement to volumes 38, 39, 40, and 41. U.S. Government Printing Office, Washington, DC, pp 147–174

    Google Scholar 

  • Perch-Nielsen K (1985) Silicoflagellate. In: Bolli HM et al (eds) Plankton stratigraphy. Cambridge University Press, Cambridge, pp 713–762

    Google Scholar 

  • Pernice MC et al (2013) General patterns of diversity in major marine microeukaryote lineages. PLoS One 8, e57170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Porter SM (2004) The fossil record of early eukaryotic diversification. Paleontol Soc Pap 10:35–50

    Google Scholar 

  • Porter SM (2006) The Proterozoic fossil record of heterotrophic eukaryotes. In: Xiao S, Kaufman AJ (eds) Neoproterozoic geobiology and paleobiology. Springer, Amsterdam, pp 1–21

    Chapter  Google Scholar 

  • Pouille L et al (2011) Lower Cambrian (Botomian) polycystine Radiolaria from the Altai Mountains (southern Siberia Russia). C R Palevol 10:627–633

    Article  Google Scholar 

  • Preto N et al (2013) Onset of significant pelagic carbonate accumulation after the Carnian Pluvial Event (CPE) in the western Tethys. Facies 59:891–914

    Article  Google Scholar 

  • Rasmussen B et al (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Knoll AH (2010) Non-skeletal biomineralization by eukaryotes: matters of moment and gravity. Geomicrobiol J 27:572–584

    Article  CAS  Google Scholar 

  • Retallack GJ et al (2013) Problematic urn-shaped fossils from a Paleoproterozoic (2.2 Ga) paleosol in South Africa. Precambrian Res 235:71–87

    Article  CAS  Google Scholar 

  • Rochette NC et al (2014) Phylogenomic test of the hypotheses for the evolutionary origin of eukaryotes. Mol Biol Evol. doi:10.1093/molbev/mst272

    PubMed Central  PubMed  Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The diatoms. Biology & morphology of the genera. Cambridge University Press, Cambridge

    Google Scholar 

  • Rowland SJ, Robson JN (1990) The widespread occurrence of highly branched acyclic C20, C25 and C30 hydrocarbons in recent sediments and biota-a review. Mar Environ Res 30:191–216

    Article  CAS  Google Scholar 

  • Rowland SJ et al (2001) Factors influencing the distributions of polyunsaturated terpenoids in the diatom, Rhizosolenia setigera. Phytochemistry 58:717–728

    Article  CAS  PubMed  Google Scholar 

  • Sabirov AA, Gushchin SB (2006) New early Ordovician calcareous foraminifers of the Middle Tien Shan. Paleontol J 40:11–19

    Article  Google Scholar 

  • Schallreuter REL (1983) Calcareous foraminifera from the Ordovician of Baltoscandia. J Micropalaeontol 2:1–6

    Article  Google Scholar 

  • Schmidt AR et al (2010) Testate amoebae from a Cretaceous forest floor microbiocoenosis of France. J Eukaryot Microbiol 57:245–249

    PubMed  Google Scholar 

  • Schopf JW (2006) Fossil evidence of Archean life. Phil Trans R Soc B 361:869–885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scott DB, Medioli F, Braund R (2003) Foraminifera from the Cambrian of Nova Scotia: the oldest multichambered foraminifera. Micropaleontology 49:109–126

    Article  Google Scholar 

  • Sha J-P et al (2012) Non-marine stratigraphic correlation of Early Cretaceous deposits in NE China, SE Korea and SW Japan, non-marine molluscan biochronology, and palaeogeographic implications. J Stratigr 36:357–381

    Google Scholar 

  • Shields GA et al (2007) Neoproterozoic glaciomarine and cap dolostone facies of the southwestern Taoudéni Basin (Walidiala Valley, Senegal/Guinea, NW Africa). C R Geosci 339:186–199

    Article  CAS  Google Scholar 

  • Sierra R et al (2013) Deep relationships of Rhizaria revealed by phylogenomics: a farewell to Haeckel’s Radiolaria. Mol Phylogenet Evol 67:53–59

    Article  PubMed  Google Scholar 

  • Simmons MD et al (1997) The Jurassic Favusellacea, the earliest Globigerinina. In: Boudagher-Fadel MK et al (eds) The early evolutionary history of planktonic foraminifera. Springer, Amsterdam, pp 17–30

    Chapter  Google Scholar 

  • Sims PA, Mann DG, Medlin LK (2006) Evolution of the diatoms: insights from fossils, biological and molecular data. Phycologia 45:361–402

    Article  Google Scholar 

  • Sinninghe Damsté JS et al (1989) Characterisation of highly branched isoprenoid thiophenes occurring in sediments and immature crude oils. Org Geochem 14:555–567

    Article  Google Scholar 

  • Sinninghe Damsté JS et al (1999) A C25 highly branched isoprenoid alkene and C25 and C27 n-polyenes in the marine diatom Rhizosolenia setigera. Org Geochem 30:95–100

    Google Scholar 

  • Sinninghe Damsté JS et al (2004) The rise of the rhizosolenid diatoms. Science 304:584–587

    Article  CAS  Google Scholar 

  • Sorhannus U (2007) A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. Mar Micropaleontol 65:1–12

    Article  Google Scholar 

  • Sprott GD, Ekiel I, Dicaire C (1990) Novel, acidlabile, hydroxydiether lipid cores in methanogenic bacteria. J Biol Chem 265:735–740

    Google Scholar 

  • Sugitani K et al (2013) Microfossil assemblage from the 3400 Ma Strelley Pool Formation in the Pilbara Craton, Western Australia: results from a new locality. Precambrian Res 226:59–74

    Article  CAS  Google Scholar 

  • Suzuki N, Aita Y (2011) Radiolaria: achievements and unresolved issues: taxonomy and cytology. Plankton Benthos Res 6:69–91

    Article  Google Scholar 

  • Suzuki N, Ogane K (2004) Paleoceanographic affinities of radiolarian faunas in late Aalenian time (Middle Jurassic) recorded in the Jurassic accretionary complex of Japan. J Asian Earth Sci 23:343–357

    Article  Google Scholar 

  • Suzuki N et al (2007) Geology of the Kuzumaki-Kamaishi Subbelt of the North Kitakami Belt (a Jurassic accretionary complex), Northeast Japan: case study of the Kawai-Yamada area, eastern Iwate Prefecture. Bull Tohoku Univ Mus 6:103–174

    Google Scholar 

  • Takahashi K, Honjo S (1981) Vertical flux of Radiolaria: a taxon-quantitative sediment trap study from the western tropical Atlantic. Micropaleontology 27:140–190

    Article  Google Scholar 

  • Takahashi S et al (2014) Bioessential element-depleted ocean following the euxinic maximum of the end-Permian Mass Extinction. Earth Planet Sci Lett 393:94–140

    Article  CAS  Google Scholar 

  • Takemura A et al (2009) Late Permian radiolarian fauna from a phosphatic nodule in Northern Chichibu Belt, Shikoku, Southwest Japan. NOM Spec Vol 14:583–594

    Google Scholar 

  • Talyzina ZM et al (2000) Affinities of early Cambrian acritarchs studied by using microscopy, fluorescence flow cytometry and biomarkers. Rev Palaebot Palynol 108:37–53

    Article  Google Scholar 

  • Theriot EC et al (2011) Status of the pursuit of the diatom phylogeny: are traditional views and new molecular paradigms really that different? In: Seckbach J, Kociolek JP (eds) The diatom world. Springer, Amsterdam, pp 123–142

    Google Scholar 

  • Tsoy IV (2011) Silicoflagellates of the Cenozoic of the Japan and Okhotsk seas and the Kuril-Kamchatka Trench. Russian Academy of Sciences, Far East Branch. Dalnauka, Vladivostok

    Google Scholar 

  • Vachard D et al (2010) Palaeozoic Foraminifera: systematics, palaeoecology and responses to global changes. Rev Micropaléont 53:209–254

    Article  Google Scholar 

  • Verne-Mismer J et al (1988) Molecular fossils of chlorophyll c of the 17-nor-DPEP series. Structure determination, synthesis, geochemical significance. Tetrahedron Lett 29:371–374

    Article  CAS  Google Scholar 

  • Vincent E, Berger WH (1981) Planktonic foraminifera and their use in paleoceanography. In: Emiliani C (ed) The sea, vol 7. Wiley, New York, pp 1025–1119

    Google Scholar 

  • Volkman JK et al (1980) Novel unsaturated straight-chain C37–C39 methyl and ethyl ketones in marine sediments and a coccolithophore Emiliania huxleyi. In: Douglas AG, Maxwell JR (eds) Advances in organic geochemistry 1979. Pergamon, Oxford, pp 219–227

    Google Scholar 

  • Volkman JK, Stephanie MB, Dunstan GA (1994) C25 and C30 highly branched isoprenoid alkenes in laboratory cultures of two marine diatoms. Org Geochem 21:407–413

    Article  CAS  Google Scholar 

  • Waldbauer JR et al (2009) Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Res 169:28–47

    Article  CAS  Google Scholar 

  • Werne JP et al (2000) Timing of early diagenetic sulfurization of organic matter: a precursor-product relationship in Holocene sediments of the anoxic Cariaco Basin, Venezuela. Geochim Cosmochim Acta 64:1741–1751

    Article  CAS  Google Scholar 

  • Wheeler AJ, Stadnitskaia A (2011) Benthic deep-sea carbonates: reefs and seeps. In: Hüneke H, Mulder T (eds) Deep-sea sediments. Developments in sedimentology, vol 63. Elsevier, Amsterdam, pp 397–455

    Chapter  Google Scholar 

  • White CE (2009) Stratigraphy of the lower Paleozoic Goldenville and Halifax groups in southwestern Nova Scotia. Atl Geol 46:136–154

    Google Scholar 

  • Williams DM, Kociolek JP (2011) An overview of diatom classification with some prospects for the future. In: Seckbach J, Kociolek JP (eds) The diatom world. Springer, Amsterdam, pp 49–91

    Google Scholar 

  • Witkowski J et al (2011a) Taxonomic composition, paleoecology, and biostratigraphy of Late Cretaceous diatoms from Devon Island, Nunavut, Canadian High Arctic. Cret Res 32:277–300

    Article  Google Scholar 

  • Witkowski J et al (2011b) Rutilaricaeae redefined: a review of fossil bipolar diatom genera with centrally positioned linking structures, with implications for the origin of pennate diatoms. Eur J Phycol 46:378–398

    Article  Google Scholar 

  • Wittaker J et al (2013) Total sediment thickness of the world’s oceans and marginal seas, version 2. http://www.ngdc.noaa.gov/mgg/sedthick/. Accessed 16 Sept 2014

  • Won M-Z, Below R (1999) Cambrian Radiolaria from the Georgina Basin, Queensland, Australia. Micropaleontology 45:325–363

    Article  Google Scholar 

  • Wraige EJ et al (1997) Variations in structures and distributions of C25 highly branched isoprenoid (HBI) alkenes in cultures of the diatom, Haslea ostrearia (Simonsen). Org Geochem 27:497–505

    Article  CAS  Google Scholar 

  • Yamamoto S (1987) Thickness distribution of reddish brown clay in the western North Pacific. J Oceanogr Soc Jpn 43:139–148

    Article  Google Scholar 

  • Yin H-F et al (2001) The Global Stratotype Section and Point (GSSP) of the Permian-Triassic boundary. Episodes 24:102–114

    Google Scholar 

  • Young JR et al (2004) Structure and morphogenesis of the coccoliths of the CODENET species. In: Thierstein HR, Young JR (eds) Coccolithophores –from molecular processes to global impact. Springer, Tokyo, pp 191–216

    Google Scholar 

  • Zapata M, Garrido JL, Jeffrey SW (2006) Chlorophyll c pigments: current status. In: Grimm B et al (eds) Chrlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Advances in photosynthesis and respiration, vol 25. Springer, Dordrecht, pp 39–53

    Chapter  Google Scholar 

Download references

Acknowledgments

This manuscript was significantly improved with constructive comments and advice from the following specialists of variable taxonomic groups: Prof. Takeo Horiguchi and Dr. Kei’ichi Hayashi (acritarch and dinoflagellates), Drs. Kengo Kawagata and Hiroki Hayashi (foraminifers); and Drs. Akihiro Tuji, Megumi Saito and Itsuki Suto (diatoms). The authors thank Drs. Itsuki Suto and Satoshi Takahashi for the overall documentation of this manuscript. This chapter was financially supported by the Cooperative Research Project with Centre National de la Recherche Scientifique (CNRS), “Morpho-molecular Diversity Assessment of Ecologically, Evolutionary, and Geologically Relevant Marine Plankton (Radiolaria)” by the Strategic International Research Cooperative Program hosted by the Japan Science and Technology Agency (JST) (N. Suzuki).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noritoshi Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Suzuki, N., Oba, M. (2015). Oldest Fossil Records of Marine Protists and the Geologic History Toward the Establishment of the Modern-Type Marine Protist World. In: Ohtsuka, S., Suzaki, T., Horiguchi, T., Suzuki, N., Not, F. (eds) Marine Protists. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55130-0_15

Download citation

Publish with us

Policies and ethics