Skip to main content

Ecology and Distribution of Protists in Brackish Water Lakes

  • Chapter
Marine Protists

Abstract

A brackish water area means water that is a little salty, indicating salinity between fresh and marine waters. While it is known as the habitat for many diversified organisms, it is a harsh environment due to changes in salinity. Although it has been speculated for many years that biodiversity is lowered at a salinity of 5–8 ‰ within the salinity gradient in the brackish water area, planktons such as planktonic protists, in particular, have been recently found to rather increase their diversity in this salinity range. Planktonic protists are not likely to create new species easily that inhabit only specified areas, because their small size makes it easy for them to expand their habitat areas and less likely for them to be extinguished. In reality, endemic species are found in many places including brackish water areas, but we do not have a clear explanation for this discrepancy. Lake Shinji and Lake Nakaumi are the prominent brackish water lakes in Japan. In these lakes, a halocline is formed, as in many other brackish water lakes. This chapter provides an overview of the survey of protist diversity in these lakes, with an attempt to determine the environmental factors influencing the composition of species in the brackish water area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Attrill MJ (2002) A testable linear model for diversity trends in estuaries. J Anim Ecol 71:262–269

    Article  Google Scholar 

  • Azovsky AI (2000) Concept of scale in marine ecology: linking the words of the worlds? Web Ecol 1:28–34

    Article  Google Scholar 

  • Beijerinck MW (1913) De infusies en de ontdekking der bacteriën. Jaarboek van de Koninklijke Akademie v. Wetenschappen. Müller, Amsterdam

    Google Scholar 

  • Boesch DF, Diaz RJ, Virnstein RW (1976) Effects of Tropical Storm Agnes on soft-bottom macrobenthic communities of the James and York estuaries and the lower Chesapeake Bay. Chesap Sci 17:246–259

    Article  Google Scholar 

  • Cognetti G, Maltagliati F (2000) Biodiversity and adaptive mechanisms in brackish water fauna. Mar Pollut Bull 40:7–14

    Article  CAS  Google Scholar 

  • Crump BC, Armbrust EV, Baross JA (1999) Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia river, its estuary, and the adjacent coastal ocean. Appl Environ Microbiol 65:3192–3204

    PubMed Central  CAS  PubMed  Google Scholar 

  • Deaton LE, Greenberg MJ (1986) There is no horohalinicum. Estuaries 9:20–30

    Article  CAS  Google Scholar 

  • Dolan JR, Gallegos CL (2001) Estuarine diversity of tintinnids (planktonic ciliates). J Plankton Res 23:1009–1027

    Article  Google Scholar 

  • Ekaterina M, Irena T, Sergei S (2012) Diversity and seasonality in structure of ciliate communities in the Neva Estuary (Baltic Sea). J Plankton Res 34:208–220

    Article  Google Scholar 

  • Fenchel T (1993) There are more small than large species? Oikos 68:375–378

    Article  Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063

    Article  CAS  PubMed  Google Scholar 

  • Finlay BJ, Esteban GF (1998) Planktonic ciliate species diversity as an integral component of ecosystem function in a freshwater pond. Protist 149:155–165

    Article  CAS  PubMed  Google Scholar 

  • Finlay BJ, Fenchel T (2001) Protozoan community structure in a fractal soil environment. Protist 152:203–218

    Article  CAS  PubMed  Google Scholar 

  • Fisher HB, List EJ, Koh RCY, Imberger J, Brooks NA (1979) Mixing in inland and coastal waters. Academic, New York, pp 148–228

    Book  Google Scholar 

  • Foissner W (2006) Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozool 45:111–136

    Google Scholar 

  • Gause GF (1934) The struggle for existence. Williams & Wilkins Co., Baltimore

    Book  Google Scholar 

  • Hausmann K, Hülsmann N, Radek R (2003) Protistology. E. Schweizerbart’sche Verlagsbuchhandlung Stuttgart

    Google Scholar 

  • Hewson I, Fuhrman JA (2004) Richness and diversity of bacterioplankton species along an estuarine gradient in Moreton Bay, Australia. Appl Environ Microbiol 70:3425–3433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huisman J, Weissing FJ (1999) Biodiversity of plankton by species oscillations and chaos. Nature 402:407–410

    Article  Google Scholar 

  • Hutchinson GE (1961) The paradox of the plankton. Am Nat 95:137–145

    Article  Google Scholar 

  • Ishida H, Ishibashi M (2006) Seasonal changes in species composition of ciliate in the Lake Nakaumi. Jpn J Protozool 39:29–35

    Google Scholar 

  • Khlebovich VV (1969) Aspects of animal evolution related to critical salinity and internal state. Mar Biol 2:338–345

    Article  CAS  Google Scholar 

  • Kinne O (1971) Marine ecology. A comprehensive, integrated treatise on life in oceans and coastal waters. 1: Environmental factors. Interscience/Wiley, London

    Google Scholar 

  • Laprise R, Dodson JJ (1994) Environmental variability as a factor controlling spatial patterns in distribution and species diversity of zooplankton in the St. Lawrence Estuary. Mar Ecol Prog Ser 107:67–81

    Article  Google Scholar 

  • Lindley JA, Batten SD (2002) Long-term variability in the diversity of North Sea zooplankton. J Mar Biol Assoc 82:31–40

    Google Scholar 

  • Mironova EI, Telesh IV, Skarlato SO (2009) Planktonic ciliates of the Baltic Sea. Inland Water Biol 2:13–24

    Article  Google Scholar 

  • Remane A (1934) Die Brackwasserfauna. Zool Anz 7:34–74

    Google Scholar 

  • Remane A, Schlieper C (1971) Biology of brackish water, 2nd revised edn. John Wiley & Sons, New York

    Google Scholar 

  • Stock C, Grønlien HK, Allen RD, Naitoh Y (2002) Osmoregulation in Paramecium: in situ ion gradients permit water to cascade through the cytosol to the contractile vacuole. J Cell Sci 115:2339–2348

    CAS  PubMed  Google Scholar 

  • Telesh IV (2004) Plankton of the Baltic estuarine ecosystems with emphasis on Neva Estuary: a review of present knowledge and research perspectives. Mar Pollut Bull 49:206–219

    Article  CAS  PubMed  Google Scholar 

  • Telesh IV, Heerkloss R (2002) Atlas of estuarine zooplankton of the southern and eastern Baltic Sea. Part I: Rotifera. Naturwissenschaftliche Forschungsergebnisse, Verlag Dr. Kovac, Hamburg

    Google Scholar 

  • Telesh IV, Heerkloss R (2004) Atlas of estuarine zooplankton of the southern and eastern Baltic Sea. Part II: Crustacea. Naturwissenschaftliche Forschungsergebnisse, Verlag Dr. Kovaˇc, Hamburg. 118 pp

    Google Scholar 

  • Telesh IV, Golubkov SM, Alimov AF (2008) The Neva Estuary ecosystem. In: Schiewer U (ed) Ecology of Baltic coastal waters. Ecol Stud 197:259–284

    Google Scholar 

  • Telesh I, Postel L, Heerkloss R, Mironova E, Skarlato S (2009) Zooplankton of the open Baltic Sea: extended atlas. BMB Publication No.21 – Meereswiss. Ber., 76, Warnemünde, 1–290

    Google Scholar 

  • Telesh I, Schubert H, Skarlato SO (2011) Revisiting Remane’s concept: evidence for high plankton diversity and a protistan species maximum in the horohalinicum of the Baltic Sea. Mar Ecol Prog Ser 421:1–11

    Article  Google Scholar 

  • Tokuoka T, Sampei Y, Kamei T, Tamai K, Nishimura K, Matsuda S, Suzaki S (1996) Long-term observation of the Halocline in Nakaumi Lagoon. Laguna 3:73–90

    Google Scholar 

  • Tokuoka T, Sampei Y, Itasaka N, Kamei T (2001) A new discovery on the halocline behavior at lake Nakaumi –from 1996 observation by the echo-sounding instrument settled on leka bottom. Laguna 8:57–66

    Google Scholar 

  • Wilkinson DM (2001) What is the upper size limit for cosmopolitan distribution in free-living microorganisms? J Biogeogr 28:285–291

    Article  Google Scholar 

  • Wolff WJ (1973) The estuary as a habitat. An analysis of data on the soft-bottom macrofauna of the estuarine area of the rivers Rhine, Meuse, and Scheldt. Zool Verh Leiden 126:1–242

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Ishida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ishida, H. (2015). Ecology and Distribution of Protists in Brackish Water Lakes. In: Ohtsuka, S., Suzaki, T., Horiguchi, T., Suzuki, N., Not, F. (eds) Marine Protists. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55130-0_14

Download citation

Publish with us

Policies and ethics