Skip to main content

Groundwater Research and Management: New Directions and Re-invention

  • Chapter
  • First Online:
Groundwater as a Key for Adaptation to Changing Climate and Society

Part of the book series: Global Environmental Studies ((GENVST))

Abstract

Groundwater hydrology is a relatively new scientific discipline, although the use of groundwater for water supply dates from the time when humans first noticed the existence of springs. Some research themes in groundwater hydrology, for example, well hydraulics, consistently receive strong interest while other themes are periodically revisited and reinvented. For example, recent interest in the hyporheic zone motivated research on the old topic of groundwater–surface water interaction. Improved instrumentation for measuring subsurface temperature motivated a return to the old topic of heat as a groundwater tracer. Groundwater sustainability is a re-invention of safe yield. Assessing hydrologic impacts of climate change involves analyzing temporal variability, which hydrologists have done for a long time.

In this chapter, the following four “big” issues are considered for the purpose of exploring challenges for groundwater management in the twenty-first century: sustainability, climate change, effects of agricultural land use, and water and energy. Addressing those four issues involves both policy and research challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alley WM, Leake SA (2004) The journey from safe yield to sustainability. Ground Water 42(1):12–16

    Article  Google Scholar 

  • Anderson MP (1979) Using models to simulate the movement of contaminants through ground water flow systems. Crit Rev Environ Contr 9(2):97–156

    Article  Google Scholar 

  • Anderson MP (2005) Heat as a ground water tracer. Ground Water 43(6):951–968

    Article  CAS  Google Scholar 

  • Anderson MP (2007) Ground water ethics. Ground Water 45(4):389

    Article  CAS  Google Scholar 

  • Anderson MP, McCray JM (eds) (2011) Lessons learned from legacy research sites. Ground Water 49(5):617–768

    Google Scholar 

  • Apgar MA, Langmuir D (1971) Ground-water pollution potential of a landfill above the water table. Ground Water 9(6):76–96

    Article  Google Scholar 

  • Baedecker MJ, Back W (1979) Hydrogeological processes and chemical reactions at a landfill. Ground Water 17(5):429–437

    Article  CAS  Google Scholar 

  • Black M, King J (2009) The atlas of water: mapping the world’s most critical resource. University of California Press, Berkeley

    Google Scholar 

  • Bohling G, Butler JJ Jr (2010) Inherent limitations to hydraulic tomography. Ground Water 48(6):809–824

    Article  CAS  Google Scholar 

  • Bredehoeft JB (2002) The water budget myth revisited: why hydrogeologists model. Ground Water 44(4):340–345

    Article  Google Scholar 

  • Butler JJ Jr, Dietrich P, Wittig V, Christy T (2007) Characterizing hydraulic conductivity with the direct-push permeameter. Ground Water 45(4):409–419

    Article  CAS  Google Scholar 

  • Celia MA, Nordbotten JM (2009) Practical modeling approaches for geological storage of carbon dioxide. Ground Water 47(5):627–638

    Article  CAS  Google Scholar 

  • Chapman DS, Davis MG (2010) Climate change: past, present, and future. Eos 91(37):325–326

    Article  Google Scholar 

  • Collins M (2002) Climate predictability on interannual to decadal time scales: the initial value problem. Climate Dynam 19:671–692

    Article  Google Scholar 

  • Darcy HPG (1856) Determination of the laws of water flow through sand. In: The public fountains of the City of Dijon. Appendix D: Filtration. Victor Dalmont, Paris

    Google Scholar 

  • DeAngelis A, Dominguez F, Fan Y, Robock A, Kustu MD, Robinson D (2010) Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J Geophys Res 115:D15115. doi:10.1029/2010JD013892

    Article  Google Scholar 

  • Dupuit J (1863) Etudes theoriques et pratiques sur le movement des eaux dans les canaux decouverts et a travers les terrains permeables. Dunod, Paris

    Google Scholar 

  • Fan Y, Miguez-Macho G, Weaver CP, Walko R, Robock A (2007) Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations. J Geophys Res 112:D10125. doi:10.1029/2006JD008111

    Article  Google Scholar 

  • Fitch EJ (2009) Water and Spirituality. Water Resources Impact 11(6):3–4

    Google Scholar 

  • Forchheimer P (1886) Ueber die Ergiebigkeit von Brunnen-Anlagen und Sickerschlitzen. Architekt Ing Ver Hannover 32:539–563

    Google Scholar 

  • Gleeson T, Alley WM, Allen DM, Sophocleous MA, Zhou Y, Taniguchi M, VanderSteen J (2012) Towards sustainable groundwater use: setting long-term goals, backcasting, and managing adaptively. Ground Water 50(1):19–26

    Article  CAS  Google Scholar 

  • Hancock PJ, Hunt RJ, Boulton AJ (eds) (2009) Hydrogeoecology and groundwater dependent ecosystems. Hydrogeol J 17(1):1–259

    Google Scholar 

  • Illman WA, Craig AJ, Liu X (2008) Practical issues in imaging hydraulic conductivity through hydraulic tomography. Ground Water 46(1):120–132

    CAS  Google Scholar 

  • IPCC (2001) Climate Change 2001. Working Group II: Impacts, adaptation and vulnerability, Chapter 19. Vulnerability to climate change and reasons for concern: a synthesis, section 19.2. http://www.ipcc.ch/ipccreports/tar/wg2/index.php?i.dp=663

  • Kendy E (2003) The false promise of sustainable pumping rates. Ground Water 41(1):2–4

    Article  CAS  Google Scholar 

  • Knight R, Pyrak-Nolte LJ, Slater L, Atekwana E, Endres A, Geller J, Lesmes D, Nakagawa S, Revil A, Sharma MM, Straley C (2010) Geophysics at the interface: response of geophysical properties to solid-fluid, fluid-fluid-, and solid-solid interfaces. Rev Geophys 48:RG4002. doi:10.1029/2007RG000242

    Article  Google Scholar 

  • Konikow LF (2011) Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys Res Lett 38:L17401. doi:10.1029/2011GL048604

    Article  Google Scholar 

  • Konikow LF, Kendy E (2005) Groundwater depletion: a global problem. Hydrogeol J 13:317–320

    Article  CAS  Google Scholar 

  • Lee CH (1915) The determination of safe yield of underground reservoirs of the closed basin type. Trans Am Soc Civil Eng 78:148–251

    Google Scholar 

  • Leopold A (1949) A sand county almanac. Oxford University Press, New York

    Google Scholar 

  • Lewis J (2011) The application of ecohydrological groundwater indicators to hydrogeological conceptual models. Ground Water. doi:10.1111/j.1745-6584.2011.00899.x

  • Liu J, Zhang M, Zheng C (2010) The role of ethics in groundwater management. Ground Water 48(1):1

    Article  Google Scholar 

  • Loáiciga HA (2009) Long-term climatic change and sustainable ground water resources management. Environ Res Lett 4:035004, 11 p

    Google Scholar 

  • NAE (2008) Grand challenges in engineering. http://www.engineeringchallenges.org/

  • Narasimhan TN (2009) Groundwater: from mystery to management. Environ Res Lett 4:035002, IP12.1088/1748-9326/4/3/035002

    Article  Google Scholar 

  • Narasimhan TN (2010) On adapting to global groundwater crisis. Ground Water 48(3):354–357

    Article  CAS  Google Scholar 

  • Nash R (1977) Do rocks have rights? Center Mag 2−12

    Google Scholar 

  • Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 35:968–972

    Article  Google Scholar 

  • Rubin Y, Hubbard SS (eds) (2005) Hydrogeophysics. Springer, New York

    Google Scholar 

  • Scheibe T (2009) Multi-scale reactive transport modeling. http://www.pnl.gov/biology/sfa/pdf/scheibe.pdf

  • Schwartz FW (2012) Volume 50 and beyond. Ground Water 50(1):1

    Article  CAS  Google Scholar 

  • Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P, Portmann FT (2010) Groundwater use for irrigation: a global inventory. Hydrol Earth Syst Sci 14:1863–1880

    Article  Google Scholar 

  • Theis CV (1935) The relation between lowering of the piezometric surface and rate and duration of discharge of a well using groundwater storage. Trans Am Geophys Union 16:519–524

    Article  Google Scholar 

  • Theis CV (1940) The source of water derived from wells. Civil Eng 10(5):277–280

    Google Scholar 

  • Thiem G (1906) Hydrologische methoden. JM Gebhardt, Leipzig

    Google Scholar 

  • Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37:L20402. doi:10.1029/2010GL044571

    Article  Google Scholar 

  • Walsh B (2011) The gas dilemma. Time 177(14):40–48

    Google Scholar 

  • WICCI Stormwater Working Group (2010) http://wicci.wisc.edu/uploads/Climate_Change_-_High_Water_talk_5-11-10.pdf

  • Wood WW (2009) Carbon dioxide and ground water extraction in the United States. Ground Water 47(2):168–169, Erratum 47(4):491

    Article  CAS  Google Scholar 

  • Yeh T-CJ, Lee C-H (2007) Time to change the way we collect and analyze data for aquifer characterization. Ground Water 45(2):116–118

    Article  CAS  Google Scholar 

  • Yow JL, Hunt JR (2002) Coupled processes in rock mass performance with emphasis on nuclear waste isolation. Int J Rock Mech Min Sci 39:143–150

    Article  Google Scholar 

  • Zektser IS, Everett LG (2006) Ground water resources of the world and their use. National Ground Water Association Press, Westerville

    Google Scholar 

  • Zheng C, Liu J, Cao G, Kendy E, Wang H, Jia Y (2010) Can China cope with its water crisis? Perspectives from the North China Plain. Ground Water 48(3):350–354

    Article  Google Scholar 

  • Zhou Q, Birkholzer JT, Mehnert E, Lin Y-F, Zhang K (2010) Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment. Ground Water 48(4):494–514

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary P. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Anderson, M.P. (2014). Groundwater Research and Management: New Directions and Re-invention. In: Taniguchi, M., Hiyama, T. (eds) Groundwater as a Key for Adaptation to Changing Climate and Society. Global Environmental Studies. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54968-0_1

Download citation

Publish with us

Policies and ethics