Skip to main content

Advertisement

Log in

Water resources meet sustainability: new trends in environmental hydrogeology and groundwater engineering

  • Editorial
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Groundwater is a dynamic, finite, and vulnerable but resilient natural resource to be protected in an environmentally sustainable manner. Groundwater systems require a comprehensive understanding of climatology, geology, morphotectonics, hydrogeology, hydrogeochemistry, hydrodynamics, isotope hydrology, hydrogeomorhology, rock and soil hydrogeotechnics, and surface hydrology. Groundwater conceptual models (ground model, hydrogeological conceptual model, and numerical model)—from site investigations to regional watersheds and or global hydrological systems—based on earth systems make a major contribution to the sustainability and management of water resources. The thematic issue on “sustainability and water resources” includes a wide variety of unique contributions in environmental hydrogeology and water-related research and practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adger N (2006) Vulnerability. Glob Environ Change 16(3):268–281

    Article  Google Scholar 

  • Agricola G (1556) De Re Metallica (Georgius Agricola, De Re Metallica translated from the first Latin edition of 1556, by Hoover HC and Hoover LH, 1912, London: The mining magazine)

  • Alexander DE (2013) Resilience and disaster risk reduction: an etymological journey. Nat Haz Earth Syst Sci Discuss 1:1257–1284

    Article  Google Scholar 

  • Alley WM, Leake SA (2004) The journey from safe yield to sustainability. Ground Water 42(1):12–16

    Article  Google Scholar 

  • Alley WM, Reilly TE, Franke OL (1999) Sustainability of ground-water resources. US Geological Survey Circular 1186 79, Washington

  • Alvarez W, Leitão H (2010) The neglected early history of geology: the Copernican revolution as a major advance in understanding the Earth. Geology 38(3):231–234

    Article  Google Scholar 

  • Besson J (1569) L’art et science de trouver les eaux et fontaines cachées sous terre. Pierre Trepperel libraire, A Orlèans, France (new print from 1569 edition, preface by LaRocque J, 1969, Columbus, Ohio)

  • Biswas AK (1970) History of hydrology. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  • Biswas AK (1988) Sustainable water development for developing countries. Water Res Dev 4(4):233–242

    Article  Google Scholar 

  • Bogardi JJ, Dudgeon D, Lawford R, Flinkerbusch E, Meyn A, Pahl-Wostl C, Vielhauer K, Vörösmarty C (2012) Water security for a planet under pressure: interconnected challenges of a changing world call for sustainable solutions. Curr Opin Environ Sustain 4(1):35–43

    Article  Google Scholar 

  • Bono P, Boni C (1996) Water supply of Rome in antiquity and today. Environ Geol 27(2):126–134

    Article  Google Scholar 

  • Boulé J, Itri J (2014) Getting resiliency right. In water: managing our most precious resource. Chall Netw 77:6–10

    Google Scholar 

  • Braga B, Chartres C, Cosgrove WJ, Veiga da Cunha L, Gleick PH, Kabat P, Kadi MA, Loucks DP, Lundqvist J, Narain S, Xia J (2014) Water and the future of humanity: revising water security. Gulbenkian think tank on water and the future of humanity. Calouste Gulbenkian Foundation. Springer, Berlin

    Google Scholar 

  • Carvalho JM (1996) Mineral water exploration and exploitation at the Portuguese Hercynian Massif. Environ Geol 27:252–258

    Article  Google Scholar 

  • Chaminé HI, Carvalho JM (2014) Meeting sustainability and water resources: a dialogue about groundwater science and hydrogeology practice. Environ Earth Sci. doi:10.1007/s12665-014-3969-z

  • Chaminé HI, Carvalho JM, Afonso MJ, Teixeira J, Freitas L (2013) On a dialogue between hard-rock aquifer mapping and hydrogeological conceptual models: insights into groundwater exploration. Eur Geol Mag J Eur Fed Geol 35:26–31

    Google Scholar 

  • Chaminé HI, Afonso MJ, Freitas L (2014a) From historical hydrogeological inventory through GIS mapping to problem solving in urban groundwater systems. Eur Geol Mag J Eur Fed Geol 38:33–39

    Google Scholar 

  • Chaminé HI, Fernández-Rubio R, Simões Cortez JA, Oliveira Silva M, Custodio E, Llamas MR, Chambel A, Lydon JW, Fox RA, Jones GL, Cotelo Neiva JM, Gama Pereira LC, Borges FS, Oliveira R, Costa Pereira A, Gomes Coelho A, Baptista R, Nunes JC, Senos Matias M, Rocha F (2014b) Hydrogeologist J. Martins Carvalho: professional, professor and gentleman. Envir Earth Sci. doi:10.1007/s12665-014-3982-2

  • Chaminé HI, Afonso MJ, Ramos L, Pinheiro R (2015) Scanline sampling techniques for rock engineering surveys: insights from intrinsic geologic variability and uncertainty. In: Giordan D, Thuro K, Carranza-Torres C, Wu F, Marinos P, Delgado C (eds) Engineering Geology for Society and Territory, Applied Geology for Major Engineering Projects, IAEG, vol 6. Springer, pp 357–361

  • Custodio E (2002) Overexploitation, what does it mean? Hydrogeol J 10(2):254–277

    Article  Google Scholar 

  • Da Vinci L (1480–1518) Codex Atlanticus. Biblioteca Ambrosiana, Milan, Italy

  • Darcy H (1856) Les fontaines publiques de la Ville de Dijon. Victor Dalmont, Paris (the public fountains of the City of Dijon; translation by Bobeck P, 2004, Kendall Hunt Publishing Co.)

  • Dermody BJ, van Beek RPH, Meeks E, Goldewijk KK, Scheidel W, van der Velde Y, Bierkens MFP, Wassen MJ, Dekker SC (2014) A virtual water network of the Roman world. Hydrol Eart Syst Sci 18:5025–5040

    Article  Google Scholar 

  • Dott RH Jr (1998) What is unique about geological reasoning? GSA Today 10(10):15–18

    Google Scholar 

  • Doyle P (2012) Examples of the influence of groundwater on British military mining in Flanders, 1914–1917. In: Rose EPF, Mather JD (eds) Military aspects of hydrogeology, Geological Society, vol 362. Special Publications, London, pp 73–83

    Google Scholar 

  • EC [European Commission] (2013) A water blueprint for Europe. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Falkenmark M (1995) Land-water linkages: a synopsis. FAO Land Water Bull 1:15–17

    Google Scholar 

  • Fetter CW Jr (2004a) Hydrogeology: a short history, part 1. Ground Water 42(5):790–792

    Article  Google Scholar 

  • Fetter CW Jr (2004b) Hydrogeology: a short history, part 2. Ground Water 42(6):949–953

    Article  Google Scholar 

  • Fookes PG, Baynes FJ, Hutchinson JH (2001) Total geological history: a model approach to the anticipation, observation and understanding of site conditions. Ground Eng Mag Brit Geotech Soc 34(3):42–47

    Google Scholar 

  • Foster S, Ait-Kadi M (2012) Integrated Water Resources Management (IWRM): how does groundwater fit in? Hydrogeol J 20:415–418

    Article  Google Scholar 

  • Foster S, MacDonald A (2014) The ‘water security’ dialogue: why it needs to be better informed about groundwater. Hydrogeol J 22:1489–1492

    Article  Google Scholar 

  • Frodeman R (1995) Geological reasoning: geology as an interpretive and historical science. Geol Soc Am Bull 107(8):960–968

    Article  Google Scholar 

  • Galloway DL (2010) The complex future of hydrogeology. Hydrogeol J 18(4):807–810

    Article  Google Scholar 

  • Gleeson T, VanderSteen J, Sophocleous MA, Taniguchi M, Alley WM, Allen DM, Zhou Y (2010) Groundwater sustainability strategies. Nat Geosci 3:378–379

    Article  Google Scholar 

  • Gleeson T, Alley WM, Allen DM, Sophocleous MA, Zhou Y, Taniguchi M, VanderSteen J (2012) Towards sustainable groundwater use: setting long-term goals, backcasting, and managing adaptively. Ground Water 50(1):19–26

    Article  Google Scholar 

  • González de Vallejo LI (2012) Design with geo-hazards: an integrated approach from engineering geological methods. Soils Rocks J Geotech Geoenviron Eng 35(1):3–28

    Google Scholar 

  • Griffiths JS (2014) Feet on the ground: engineering geology past, present and future. Quart J Eng Geol Hydrol 47(2):116–143

    Article  Google Scholar 

  • Griffiths JS, Stokes M (2008) Engineering geomorphological input to ground models: an approach based on earth systems. Quart J Eng Geol Hydrol 41:73–91

    Article  Google Scholar 

  • Jury AW, Vaux Jr H (2005) The role of science in solving the world's emerging water problems. PNAS 102(44):15715–15720

    Article  Google Scholar 

  • Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23

    Article  Google Scholar 

  • Howden N, Mather J (eds) (2012) History of hydrogeology. Internat Contrib Hydrogeol Series, vol 28. CRC Press, Boca Raton

    Google Scholar 

  • Howe C, Mitchell C (eds) (2012) Water sensitive cities. Cities of the Future Series. IWA Publishing, London

    Google Scholar 

  • Keaton J (2013) Engineering geology: fundamental input or random variable?. In: Withiam JL, Phoon KK, Hussein M (eds) Foundation engineering in the face of uncertainty, vol 229. Honoring Fred H. Kulhawy. ASCE, GSP, pp 232–253

  • Kiersch GA (1998) Engineering geosciences and military operations. Eng Geol 49(2):123–176

    Article  Google Scholar 

  • Kircher A (1665) Mundus subterraneus (Liber IV). Joannes Janssonius and Elizeus Weyerstraten, Amsterdam

  • Kresik N, Mikszewski A (2013) Hydrogeological conceptual site models: data analysis and visualization. CRC Press, Boca Raton

    Google Scholar 

  • Lamarck JB (1802) Hydrogéologie. A Paris, chez l’auteur, France (hydrogeology; translated by Carozzi AV, 1964, University of Illinois Press)

  • LaMoreaux PE (2003) Chapter 2: historical development. In: LaMoreaux PE, Tanner JT (eds) Springs and bottled waters of the world: ancient history, source, occurrence, quality and use. Springer, Berlin, pp 16–32

    Google Scholar 

  • Llamas MR (2004) Water and ethics: use of groundwater. UNESCO series on water and ethics, essay 7. UNESCO, New York

    Google Scholar 

  • Llamas MR, Custodio E (2003) Intensive use of groundwater: a new situation which demands proactive action. In: Llamas MR, Custodio E (eds) Intensive use of groundwater: challenges and opportunities, AA Balkema Publishers, Rotterdam, pp 13–31

    Google Scholar 

  • Llamas MR, Martínez-Santos P (2005) Intensive groundwater use: a silent revolution that cannot be ignored. Water Sci Technol Series 51(8):167–174

    Google Scholar 

  • Margat J, van der Gun J (2013) Groundwater around the world: a geographic synopsis. CRC Press, Boca Raton

    Google Scholar 

  • Martínez-Santos P, Aldaya MM, Llamas MR (2014) Integrated water resources management in the 21st century: revisiting the paradigm. CRC Press, London

    Book  Google Scholar 

  • Mather JD, Rose EPF (2012) Military aspects of hydrogeology: an introduction and overview. In: Rose EPF, Mather JD (eds) Military aspects of hydrogeology, Geological Society, vol 362. Special Publications, London, pp 1–17

    Google Scholar 

  • Mays LW (2006) Water resources sustainability. McGraw-Hill Professional, New York

    Google Scholar 

  • Mays LW (2010) Ancient water technologies. Springer, Dordrecht

    Book  Google Scholar 

  • Mays LW (2013) Groundwater resources sustainability: past, present, and future. Water Res Manag 27:4409–4424

    Article  Google Scholar 

  • McCarthy D (2008) Water sustainability: a looming global challenge. J Am Water Works Assoc 100(9):46–47

    Google Scholar 

  • McHarg IL (1992) Design with nature Wiley series in sustainable design, 25th edn. Wiley, New York

    Google Scholar 

  • Meinzer OE (1923) The occurrence of groundwater in the US. USGS water supply paper 489, Washington DC

  • Meinzer OE (1946) Hydrology in relation to economic geology. Econ Geol 41(1):1–12

    Article  Google Scholar 

  • Neves EMG, Haldenby E (2014) Fertile ground: cultivating a renewed identity through architecture while providing a solution to sustain the natural biodiversity and thermal waters in Manteigas, Portugal. Environ Earth Sci (this issue). doi:10.1007/s12665-014-3550-9

    Google Scholar 

  • Palissy HB (1580) Discours admirables de la nature des eaux et fontaines, tant naturelles qu’artificielles, des métaux, des sels et salines, des pierres, des terres, du feu e des émaux. Chez Martin le Jeune, à l’enseigne du Serpent, Paris (the admirable discourses of Bernard Palissy; translated by La Rocque A, 1957, University of Illinois Press)

  • Paramelle AJ (1859) L’Art de découvrir les sources. Seconde édition. Dalmont et Dunod, Libraires Editeurs, Paris

    Google Scholar 

  • Peck RB (1962) Art and science in subsurface engineering. Geotechnique 12(1):60–66

    Article  Google Scholar 

  • Perrault P (1674) De l’origine des fontaines. Pierre Le Petit, Imprimeur and Libraire, Paris (on the origin of fountains; translated by La Rocque A, 1967, Hafner Publishing)

  • Petitta M (2013) New challenges for hydrogeologists. Eur Geol Mag J Eur Fed Geol 35:6–8

    Google Scholar 

  • Pfister L, Savenije HHG, Fenicia F (2009) Leonardo Da Vinci’s water theory: on the origin and fate of water. Int Ass Hydrol Sci Sp Pub, vol 9, IAHS Press, Oxfordshire

  • Provenzale A, Palazzi E (2015) Assessing climate change risks under uncertain conditions. In: Manconi A, Clague J, Shan W, Chiarle M (eds) Engineering Geology for Society and Territory, Climate Change and Engineering Geology, IAEG, vol 1. Springer, Berlin, pp 1–5

    Chapter  Google Scholar 

  • Rockström J, Falkenmark M, Folke C, Lannerstad M, Barron J, Enfors E, Gordon L WF, Heinke J, Hoff H, Pahl-Wostl C (2014) Water resilience for human prosperity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Şengör AMC (2014) How scientometry is killing science. GSA Today 24(12):44–45

    Google Scholar 

  • Sophocleous M (2000) From safe yield to sustainable development of water resources: the Kansas experience. J Hydrol 235:27–43

    Article  Google Scholar 

  • Struckmeier WF, Margat J (1995) Hydrogeological maps: a guide and standard legend. IAH Intern Contr Hydrogeol, vol 17. Heise, Hannover

    Google Scholar 

  • Taylor RG, Scanlon B, Döll P, Rodell M, van Beek R, Wada Y, Longuevergne L, Leblanc M, Famiglietti JS, Edmunds M, Konikow L, Green TR, Chen J, Taniguchi M, Bierkens MFP, MacDonald A, Fan Y, Maxwell RM, Yechieli Y, Gurdak JJ, Allen DM, Shamsudduha M, Hiscock K, Yeh PJF, Holman I, Treidel H (2013) Ground water and climate change. Nat Clim Change 3:322–329

    Article  Google Scholar 

  • Teixeira J, Chaminé HI, Carvalho JM, Pérez-Alberti A, Rocha F (2013) Hydrogeomorphological mapping as a tool in groundwater exploration. J Maps 9(2):263–273

    Article  Google Scholar 

  • Tempelhoff J, Hoag H, Ertsen M, Arnold E, Bender M, Berry K, Fort C, Pietz D, Musemwa M, Nakawo M, Ur J, van Dam P, Melosi M, Winiwarter V, Wilkinson T (2009) Where has the water come from? Water Hist 1:1–8

    Article  Google Scholar 

  • UN-WCED (United Nations World Commission on Environment and Development) (1987) Our common future. Report of the World Commission on Environment and Development (document A/42/427), Bruntland Commission, vol 4. Oxford University Press, New York

    Google Scholar 

  • van Staveren M (2006) Uncertainty and ground conditions: a risk management approach. Elsevier, Amsterdam

  • Vaux H (2011) Groundwater under stress: the importance of management. Envir Earth Sci 62:19–23

    Article  Google Scholar 

  • Vitruvius M (33 BC) (1960) De Architectura (the ten books on architecture—Book VIII (water supply); translated by Morgan MH, Dover Publications)

  • Voss M (2008) The vulnerable can’t speak: an integrative vulnerability approach to disaster and climate change research. Behemoth J Civiliz 1(3):39–71

    Google Scholar 

  • Wallace SR (1975) The Henderson ore body-elements of discovery: reflections. Min Enginer 27(6):34–36

    Google Scholar 

  • Wang XC, Zhang C, Ma X, Luo L (2015) Water cycle management: a new paradigm of wastewater reuse and safety control. Springer Briefs Wat Sci Tech, Springer, Heidelberg

  • Winter TC (1995) Recent advances in understanding the interaction of groundwater and surface water. Rev Geophys 33(issue S2):985–994

  • WWAP [United Nations World Water Assessment Programme] (2006) The United Nations world water development report 2: water a shared responsibility. UNESCO, New York

    Google Scholar 

  • WWI [The WorldWatch Institute] (2014) State of the world 2014: governing for sustainability. Island Press, Washington DC

    Book  Google Scholar 

  • Wyss M, Peppoloni S (2015) Geoethics: ethical challenges and case studies in earth sciences. Elsevier, Amsterdam

    Google Scholar 

  • Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground water surface water and a single resource. US Geol Surv Circ 1139:87

    Google Scholar 

  • Zenith R (2006) Fernando Pessoa, A little larger than the entire universe: selected poems. Penguin Books, London

    Google Scholar 

Download references

Acknowledgments

The guest editor is very grateful for the support of the Editor-in-chief, Dr. James W. LaMoreaux at all stages of the preparation of this thematic issue. Many thanks to numerous colleagues for their valuable contributions and the many reviewers for their insightful input during the peer-reviewing process to improve the quality of the papers. The thematic issue benefitted enormously from their critical suggestions. I am also extremely grateful to the International Association of Hydrogeologists (IAH) for sharing key information about the “IAH Millennium Members” issue—and hydrogeologist J. M. Carvalho is indeed the oldest IAH member from Portugal. Special thanks are extended to colleagues Maria José Afonso, José Teixeira, Liliana Freitas, Fernando Rocha, Robin Nagano, António Chambel and Gabriel Gutiérrez-Alonso for their kind support in several ways. My last thoughts will be addressed to Professor José Martins Carvalho for all of his support, mentorship and friendship throughout all these years, always with his feet on the ground… as the outstanding Roman military engineer Marcus Vitruvius put it: “we should also consider the nature of the place when we search for water” (Vitruvius 33 BC) and also the inspirational words of the Alberto Caeiro (one of the alter egos dubbed “heteronyms” of the multifaceted Portuguese poet Fernando Pessoa): “water is beautiful because it’s water” (Zenith 2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helder I. Chaminé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaminé, H.I. Water resources meet sustainability: new trends in environmental hydrogeology and groundwater engineering. Environ Earth Sci 73, 2513–2520 (2015). https://doi.org/10.1007/s12665-014-3986-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3986-y

Keywords

Navigation