Skip to main content

Novel Technology to Assay the Multicellular Network: On-Chip Cellomics Technology

  • Chapter
  • First Online:
Vascular Engineering
  • 871 Accesses

Abstract

A series of studies aimed at developing methods and technologies of analyzing epigenetic information in cells and in those networks, as well as that of genetic information, was examined to expand our understanding of how living systems are determined. Technologies of analyzing epigenetic information was developed starting from the twin complementary viewpoints of cell regulation as an “algebraic” system (emphasis on temporal aspects) and as a “geometric” system (emphasis on spatial aspects). Exploiting the combination of latest microfabrication technologies and measurement technologies, which we call on-chip cellomics technology, we can select, control, and reconstruct the environments, interaction of single cells and cell networks from “algebraic” and “geometric” viewpoints. In this chapter, our developed technolgoeis and some results for spatial viewpoint of epigenetic information as a part of a series of cell-network-based “geometric” studies of celluler systems in our research groups are summarized and reported. The knowlege and technolgies acquired from these viewpoints may lead to the use of cells that fully control practical applications like cell-network-based drug screening and the regeneration of organs from cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anzai Y, Terazono H, Yasuda K (2007) Simple non-invasive cell separation method using magnetic aptamer-conjugated microbeads and nuclease digestion. J Biol Phys Chem 7:83–86

    Article  CAS  Google Scholar 

  • Assenmacher M, Manz R, Miltenyi S, Scheffold A, Radbruch A (1995) Fluorescence-activated cytometry cell sorting based on immunological recognition. Clin Biochem 28(1):39–40

    Article  CAS  PubMed  Google Scholar 

  • Azuma C, Yasuda K, Tanabe Y, Taniguro H, Kanaya F, Nakayama A, Chen YM, Gong JP, Osada Y (2007) Biodegradation of high-toughness double network hydrogels as potential materials for artificial cartilage. J Biomed Mater Res A 81(2):373–380

    Article  PubMed  Google Scholar 

  • Bonner WA, Hulett HR, Sweet RG, Herzenberg LA (1972) Fluorescence activated cell sorting. Rev Sci Instrum 43(3):404–409

    Article  CAS  PubMed  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  • Golan L, Yeheskely-Hayon D, Minai L, Dann EJ, Yelin D (2012) Noninvasive imaging of flowing blood cells using label-free spectrally encoded flow cytometry. Biomed Opt Express 3(6):1455–1464

    Article  PubMed  PubMed Central  Google Scholar 

  • Gopinath S (2007) Methods developed for SELEX. Anal Bioanal Chem 387(1):171–182

    Article  CAS  PubMed  Google Scholar 

  • Gorkov LP (1962) On the forces acting on a small particle in an acoustical field in an ideal fluid. Sov Phys Dokl 6(9):773

    Google Scholar 

  • Grover SC, Skirtach AG, Gauthier RC, Grover CP (2001) Automated single-cell sorting system based on optical trapping. J Biomed Opt 6(1):14–22

    Article  CAS  PubMed  Google Scholar 

  • Hatayama T, Yasuda K, Nishiyama E (1994) Characterization of high-molecular-mass heat shock proteins and 42 degrees C-specific heat shock proteins of murine cells. Biochem Biophys Res Commun 204(1):357–365

    Article  CAS  PubMed  Google Scholar 

  • Hattori A, Yasuda K (2010) Comprehensive study of microgel electrode for on-chip electrophoretic cell sorting. Jpn J Appl Phys 49(6):06GM04

    Article  Google Scholar 

  • Hattori A, Umehara S, Wakamoto Y, Yasuda K (2003) Measurement of incident angle dependence of swimming bacterium reflection using on-chip single-cell cultivation assay. Jpn J Appl Phys 42(7B): L873

    Google Scholar 

  • Hattori A, Moriguchi H, Ishiwata S i, Yasuda K (2004) A 1480/1064 nm dual wavelength photo-thermal etching system for non-contact three-dimensional microstructure generation into agar microculture chip. Sensors Actuators B Chem 100(3):455–462

    Article  CAS  Google Scholar 

  • Hayashi M, Hattori A, Kim H, Terazono H, Kaneko T, Yasuda K (2011) Fully automated on-chip imaging flow cytometry system with disposable contamination-free plastic re-cultivation chip. Int J Mol Sci 12(6):3618–3634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herr JK, Smith JE, Medley CD, Shangguan D, Tan W (2006) Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem 78:2918–2924

    Article  CAS  PubMed  Google Scholar 

  • Herzenberg LA, Sweet RG (1976) Fluorescence-activated cell sorting. Sci Am 234(3):108–117

    Article  CAS  PubMed  Google Scholar 

  • Hsu CH, Di Carlo D, Chen C, Irimia D, Toner M (2008) Microvortex for focusing, guiding and sorting of particles. Lab Chip 8(12):2128–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulett HR, Bonner WA, Sweet RG, Herzenberg LA (1973) Development and application of a rapid cell sorter. Clin Chem 19(8):813–816

    CAS  PubMed  Google Scholar 

  • Imamura M, Aoki H, Eya K, Murakami T, Yasuda K (1995) Balloon angioplasty before Wheat’s operation in a patient with Turner’s syndrome. Cardiovasc Surg 3(1):70–72

    Article  CAS  PubMed  Google Scholar 

  • Inoue I, Wakamoto Y, Moriguchi H, Okano K, Yasuda K (2001a) On-chip culture system for observation of isolated individual cells. Lab Chip 1(1):50–55

    Article  CAS  PubMed  Google Scholar 

  • Inoue I, Wakamoto Y, Yasuda K (2001b) Non-genetic variability of division cycle and growth of isolated individual cells in on-chip culture system. Proc Jpn Acad Ser B Phys Biol Sci 77(8):145–150

    Article  Google Scholar 

  • Inoue I, Shiomi D, Kawagishi I, Yasuda K (2004) Simultaneous measurement of sensor-protein dynamics and motility of a single cell by on-chip microcultivation system. J Nanobiotechnol 2(1):4

    Article  Google Scholar 

  • Johnson KW, Dooner M, Quesenberry PJ (2007) Fluorescence activated cell sorting: a window on the stem cell. Curr Pharm Biotechnol 8(3):133–139

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Kojima K, Yasuda K (2007) Dependence of the community effect of cultured cardiomyocytes on the cell network pattern. Biochem Biophys Res Commun 356(2):494–498

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Nomura F, Yasuda K (2011) Orientation and community size dependences of pulsatile electrical field stimulation on lined-up and rod-shaped single cardiomyocytes. Jpn J Appl Phys 50(8):080220

    Article  Google Scholar 

  • Kaneko T, Nomura F, Hamada T, Abe Y, Takamori H, Sakakura T, Takasuna K, Sanbuissho A, Hyllner J, Sartipy P, Yasuda K (2014) On-chip in vitro cell-network pre-clinical cardiac toxicity using spatiotemporal human cardiomyocyte measurement on a chip. Sci Rep 4:4670

    PubMed  Google Scholar 

  • Kim H, Oikawa K, Watanabe N, Shigeno M, Shirakawabe Y, Yasuda K (2007) Identification of size differences of gold nanoparticles on cell surface by curvature reconstruction method using atomic force microscopy. Jpn J Appl Phys 46:L184–L186

    Google Scholar 

  • Kim H, Kira A, Yasuda K (2010a) Non-amplified quantitative detection of nucleic acid sequences using a gold nanoparticle probe set and field-emission scanning electron microscopy. Jpn J Appl Phys 49(6):06GK07

    Google Scholar 

  • Kim H, Negishi T, Kudo M, Takei H, Yasuda K (2010b) Quantitative backscattered electron imaging of field emission scanning electron microscopy for discrimination of nano-scale elements with nm-order spatial resolution. J Electron Microsc 9(5): 379-385

    Google Scholar 

  • Kim H, Takei H, Yasuda K (2010c) Production of size-controlled nanoscopic cap-shaped metal shells. Jpn J Appl Phys 49(4):048004

    Article  Google Scholar 

  • Kim H, Takei H, Yasuda K (2010d) Quantitative evaluation of a gold-nanoparticle labeling method for detecting target DNAs on DNA microarrays. Sensors Actuators B Chem 144(1):6–10

    Article  CAS  Google Scholar 

  • Kim H, Hayashi M, Terazono H, Takei H, Yasuda K (2011) Production of double-layered metal nanocups for artificial nanospace of biomolecular reaction. Jpn J Appl Phys 50(6):06GJ03

    Article  Google Scholar 

  • Kim H, Terazono H, Nakamura Y, Sakai K, Hattori A, Odaka M, Girault M, Arao T, Nishio K, Miyagi Y, Yasuda K (2014a) Development of on-chip multi-imaging flow cytometry for identification of imaging biomarkers of clustered circulating tumor cells. PLoS One 9(8):e104372

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim H, Terazono H, Takei H, Yasuda K (2014b) Cup-shaped superparamagnetic hemispheres for size-selective cell filtration. Sci Rep 4:6362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Terazono H, Takei H, Yasuda K (2014c) Fabrication of multilayered superparamagnetic particles based on sequential thermal deposition method. Jpn J Appl Phys 53(6):06JJ01

    Google Scholar 

  • King LV (1935) On the acoustic radiation pressure on circular discs: inertia and diffraction corrections. Proc R Soc Lond Ser A Math Phys Sci 153(878):1–16

    Article  Google Scholar 

  • Kojima K, Moriguchi H, Hattori A, Kaneko T, Yasuda K (2003) Two-dimensional network formation of cardiac myocytes in agar microculture chip with 1480 nm infrared laser photo-thermal etching. Lab Chip 3(4):292–296

    Article  CAS  PubMed  Google Scholar 

  • Kojima K, Kaneko T, Yasuda K (2004) A novel method of cultivating cardiac myocytes in agarose microchamber chips for studying cell synchronization. J Nanobiotechnol 2(1):9

    Article  Google Scholar 

  • Kojima K, Kaneko T, Yasuda K (2005) Stability of beating frequency in cardiac myocytes by their community effect measured by agarose microchamber chip. J Nanobiotechnol 3(1):4

    Article  Google Scholar 

  • Kojima K, Kaneko T, Yasuda K (2006) Role of the community effect of cardiomyocyte in the entrainment and reestablishment of stable beating rhythms. Biochem Biophys Res Commun 351(1):209–215

    Article  CAS  PubMed  Google Scholar 

  • Kozuka T, Tuziuti T, Mitome H (1995) Selective manipulation of micro particles using ultrasound. Tech Rep IEICE US94(82):33

    Google Scholar 

  • Liu P, Meagher RJ, Light YK, Yilmaz S, Chakraborty R, Arkin AP, Hazen TC, Singh AK (2011) Microfluidic fluorescence in situ hybridization and flow cytometry (muFlowFISH). Lab Chip 11(16):2673–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumura K, Yagi T, Yasuda K (2003a) Differential analysis of cell cycle stability in chlamydomonas using on-chip single-cell cultivation system. Jpn J Appl Phys 42(Part 2, No. 7A):L784

    Google Scholar 

  • Matsumura K, Yagi T, Yasuda K (2003b) Role of timer and sizer in regulation of Chlamydomonas cell cycle. Biochem Biophys Res Commun 306(4):1042–1049

    Article  CAS  PubMed  Google Scholar 

  • Moriguchi H, Wakamoto Y, Sugio Y, Takahashi K, Inoue I, Yasuda K (2002) An agar-microchamber cell-cultivation system: flexible change of microchamber shapes during cultivation by photo-thermal etching. Lab Chip 2(2):125–132

    Article  CAS  PubMed  Google Scholar 

  • Moriguchi H, Takahashi K, Sugio Y, Wakamoto Y, Inoue I, Jimbo Y, Yasuda K (2004) On-chip neural cell cultivation using agarose-microchamber array constructed by a photothermal etching method. Electr Eng Jpn 146(2):37–42

    Article  Google Scholar 

  • Nomura F, Kaneko T, Hattori A, Yasuda K (2011a) Label-free shape-based selection of cardiomyocytes with on-chip imaging cell sorting system. J Bioprocess Biotechnol S3-003:1–6

    Google Scholar 

  • Nomura F, Kaneko T, Hattori A, Yasuda K (2011b) On-chip constructive cell-network study (II): on-chip quasi-in vivo cardiac toxicity assay for ventricular tachycardia/fibrillation measurement using ring-shaped closed circuit microelectrode with lined-up cardiomyocyte cell network. J Nanobiotechnol 9:39

    Article  CAS  Google Scholar 

  • Nyborg WL (1967) Radiation pressure on a small rigid sphere. J Acoust Soc Am 42(5):947

    Article  Google Scholar 

  • Ogawa T, Sakata S, Nakamura S, Takuno H, Matsui I, Sarui H, Yasuda K (1994) Thyroid hormone autoantibodies in patients with Graves’ disease: effect of anti-thyroid drug treatment. Clin Chim Acta Int J Clin Chem 228(2):113–122

    Article  CAS  Google Scholar 

  • Ohuchi SP, Ohtsu T, Nakamura Y (2006) Selection of RNA aptamers against recombinant transforming growth factor-beta type III receptor displayed on cell surface. Biochimie 88:897–904

    Article  CAS  PubMed  Google Scholar 

  • Owen CS, Sykes NL (1984) Magnetic labeling and cell sorting. J Immunol Methods 73(1):41–48

    Article  CAS  PubMed  Google Scholar 

  • Schonbrun E, Gorthi SS, Schaak D (2012) Microfabricated multiple field of view imaging flow cytometry. Lab Chip 12(2):268–273

    Article  CAS  PubMed  Google Scholar 

  • Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A 103:11838–11843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spudich JL, Koshland DE (1976) Non-genetic individuality: chance in the single cell. Nature 262(5568):467–471

    Article  CAS  PubMed  Google Scholar 

  • Sugio Y, Kojima K, Moriguchi H, Takahashi K, Kaneko T, Yasuda K (2004) An agar-based on-chip neural-cell-cultivation system for stepwise control of network pattern generation during cultivation. Sensors Actuators B Chem 99(1):156–162

    Article  CAS  Google Scholar 

  • Suzuki I, Yasuda K (2007a) Constructive formation and connection of aligned micropatterned neural networks by stepwise photothermal etching during cultivation. Jpn J Appl Phys 46(9B):6398–6403

    Article  CAS  Google Scholar 

  • Suzuki I, Yasuda K (2007b) Detection of tetanus-induced effects in linearly lined-up micropatterned neuronal networks: application of a multi-electrode array chip combined with agarose microstructures. Biochem Biophys Res Commun 356(2):470–475

    Article  CAS  PubMed  Google Scholar 

  • Suzuki I, Sugio Y, Jimbo Y, Yasuda K (2004a) Individual-cell-based electrophysiological measurement of a topographically controlled neuronal network pattern using agarose architecture with a multi-electrode array. Jpn J Appl Phys 43(3B):L403–L406

    Article  CAS  Google Scholar 

  • Suzuki I, Sugio Y, Moriguchi H, Jimbo Y, Yasuda K (2004b) Modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture. J Nanobiotechnol 2(1):7

    Article  Google Scholar 

  • Suzuki I, Sugio Y, Jimbo Y, Yasuda K (2005) Stepwise pattern modification of neuronal network in photo-thermally-etched agarose architecture on multi-electrode array chip for individual-cell-based electrophysiological measurement. Lab Chip 5(3):241–247

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Orita K, Matsumura K, Yasuda K (2003) On-chip microcultivation chamber for swimming cells using visualized poly(dimethylsiloxane) valves. Jpn J Appl Phys 42(Part 2, No. 9A/B):L1104

    Google Scholar 

  • Takahashi K, Hattori A, Suzuki I, Ichiki T, Yasuda K (2004) Non-destructive on-chip cell sorting system with real-time microscopic image processing. J Nanobiotechnol 2(1):5

    Article  Google Scholar 

  • Terazono H, Anzai Y, Soloviev M, Yasuda K (2010a) Labelling of live cells using fluorescent aptamers: binding reversal with DNA nucleases. J Nanobiotechnol 8(1):8

    Article  Google Scholar 

  • Terazono H, Takei H, Hattori A, Yasuda K (2010b) Development of a high-speed real-time PCR system for rapid and precise nucleotide recognition. Proceeding of SPIE Defense, Security, and Sensing 2010, 76730U

    Google Scholar 

  • Terazono H, Takei H, Hattori A, Yasuda K (2010c) Development of a high-speed real-time polymerase chain reaction system using a circulating water-based rapid heat-exchange. Jpn J Appl Phys 49(6):06GM05

    Article  Google Scholar 

  • Terazono H, Takei H, Hayashi M, Hattori A, Yasuda K (2010d) Development of an integrated system for rapid detection of biological agents. Proceeding of SPIE Defense, Security, and Sensing 2010, 766503

    Google Scholar 

  • Terazono H, Hayashi M, Kim H, Hattori A, Yasuda K (2012) Cell-sorting system with on-chip imaging for label-free shape-based selection of cells. Jpn J Appl Phys 51(6):06FK08

    Article  Google Scholar 

  • Trickett A, Kwan YL (2003) T cell stimulation and expansion using anti-CD3/CD28 beads. J Immunol Methods 275(1-2):251–255

    Article  CAS  PubMed  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  PubMed  Google Scholar 

  • Umehara S, Wakamoto Y, Inoue I, Yasuda K (2003) On-chip single-cell microcultivation assay for monitoring environmental effects on isolated cells. Biochem Biophys Res Commun 305(3):534–540

    Article  CAS  PubMed  Google Scholar 

  • Wakamoto Y, Inoue I, Moriguchi H, Yasuda K (2001) Analysis of single-cell differences by use of an on-chip microculture system and optical trapping. Fresenius J Anal Chem 371(2):276–281

    Article  CAS  PubMed  Google Scholar 

  • Wakamoto Y, Umehara S, Matsumura K, Inoue I, Yasuda K (2003) Development of non-destructive, non-contact single-cell based differential cell assay using on-chip microcultivation and optical tweezers. Sensors Actuators B Chem 96(3):693–700

    Article  CAS  Google Scholar 

  • Yasuda K (1997) Blood concentration by superposition of higher harmonics of ultrasound. Jpn J Appl Phys 36(Part 1, No. 5B):3130

    Google Scholar 

  • Yasuda K (2000) Non-destructive, non-contact handling method for biomaterials in micro-chamber by ultrasound. Sensors Actuators B Chem 64(1-3):128–135

    Article  CAS  Google Scholar 

  • Yasuda K, Kamakura T (1997) Acoustic radiation force on micrometer-size particles. Appl Phys Lett 71(13):1771–1773

    Article  CAS  Google Scholar 

  • Yasuda K, Kiyama M, Umemura S, Takeda K (1996a) Deoxyribonucleic acid concentration using acoustic radiation force. J Acoust Soc Am 99(2):1248–1251

    Article  Google Scholar 

  • Yasuda K, Takeda K, Umemura S-i (1996b) Studies on particle separation by acoustic radiation force and electrostatic force. Jpn J Appl Phys 35(Part 1, No. 5B):3295

    Google Scholar 

  • Yasuda K, Okano K, Ishiwata S (2000) Focal extraction of surface-bound DNA from a microchip using photo-thermal denaturation. Biotechniques 28(5):1006–1011

    CAS  PubMed  Google Scholar 

  • Yasuda K, Roneker KR, Miller DD, Welch RM, Lei XG (2006) Supplemental dietary inulin affects the bioavailability of iron in corn and soybean meal to young pigs. J Nutr 136(12):3033–3038

    CAS  PubMed  Google Scholar 

  • Yasuda K, Hattori A, Kim H, Terazono H, Hayashi M, Takei H, Kaneko T, Nomura F (2013) Non-destructive on-chip imaging flow cell-sorting system for on-chip cellomics. Microfluid Nanofluid 14(6):907–931

    Article  CAS  Google Scholar 

  • Yoon YE, Chang SA, Choi SI, Chun EJ, Cho YS, Youn TJ, Chung WY, Chae IH, Choi DJ, Chang HJ (2012) The absence of coronary artery calcification does not rule out the presence of significant coronary artery disease in Asian patients with acute chest pain. Int J Cardiovasc Imaging 28:389–398

    Article  PubMed  Google Scholar 

  • Yoshioka K, Kawashima Y (1955) Acoustic radiation pressure on a compressible sphere. Acustica 5:167–173

    Google Scholar 

  • Yoshioka M, Mizutani K, Nagai K (1997) Sonic field measurement using light computerized tomography. Jpn J Appl Phys 36:3199

    Google Scholar 

  • Zborowski M, Chalmers JJ (2005) Magnetic cell sorting. Methods Mol Biol 295:291–300

    PubMed  Google Scholar 

  • Zborowski M, Chalmers JJ (2011) Rare cell separation and analysis by magnetic sorting. Anal Chem 83(21):8050–8056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all the members of Yasuda Laboratory. This work was financially supported by Japan Science and Technology Agency (JST), Grant-in-Aid for Scientific Research of Ministry of Education, Culture, Sports, Science and Technology, New Energy Development Organization (NEDO), On-chip cellomics consortium, Kanagawa Academy of Science and Technology (KAST), and Japan Defense Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Yasuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Yasuda, K. (2016). Novel Technology to Assay the Multicellular Network: On-Chip Cellomics Technology. In: Tanishita, K., Yamamoto, K. (eds) Vascular Engineering. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54801-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54801-0_17

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54800-3

  • Online ISBN: 978-4-431-54801-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics