Skip to main content

Building Functional Internal Organs from a Naïve Endodermal Sheet

  • Chapter
  • First Online:
New Principles in Developmental Processes
  • 978 Accesses

Abstract

The organs perform physiological functions with mature tissues composed of variously specialized cell types. Full maturation and proper population balances of these cell types are necessary to generate functional organs and a healthy body. Most of the internal organs are derived from the definitive endoderm (DE), which is a naïve epithelial sheet formed at an early embryonic stage, E7.5, in the mouse. Especially, the anterior pocket of the DE is the foregut known as the origin of functional epithelial cells of many vital internal organs, including the thyroid, thymus, lung, liver and pancreas. I start this review with describing the foregut formation process in the DE and spatial arrangement of the internal organs within this area. Then, I highlight developmental and physiological mechanisms that specify, pattern, and regulate morphogenesis of the lung. Recent advances have begun to define molecular mechanisms that control many of the important processes required for lung organogenesis; however, many questions remain. I, furthermore, focus on airway epithelial development, which generates the bronchial branching structure and many different functional cells. Finally, I discuss a fundamental strategy for regulating the population and localization of various cell types during organogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ang SL, Rossant J (1994) HNF-3 beta is essential for node and notochord formation in mouse development. Cell 78(4):561–574

    Article  CAS  PubMed  Google Scholar 

  • Arora R, Metzger RJ, Papaioannou VE (2012) Multiple roles and interactions of Tbx4 and Tbx5 in development of the respiratory system. PLoS Genet 8(8):e1002866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cardoso WV, Lu J (2006) Regulation of early lung morphogenesis: questions, facts and controversies. Development (Camb) 133(9):1611–1624

    Article  CAS  Google Scholar 

  • Chen J, Knowles HJ, Hebert JL et al (1998) Mutation of the mouse hepatocyte nuclear factor/forkhead homologue 4 gene results in an absence of cilia and random left-right asymmetry. J Clin Invest 102(6):1077–1082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen G, Korfhagen TR, Xu Y et al (2009) SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production. J Clin Invest 119(10):2914–2924

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen F, Cao Y, Qian J et al (2010) A retinoic acid-dependent network in the foregut controls formation of the mouse lung primordium. J Clin Invest 120(6):2040–2048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deblandre GA, Wettstein DA, Koyano-Nakagawa N et al (1999) A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos. Development (Camb) 126(21):4715–4728

    CAS  Google Scholar 

  • Eiraku M, Takata N, Ishibashi H et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature (Lond) 472(7341):51–56

    Article  CAS  Google Scholar 

  • Goss AM, Tian Y, Tsukiyama T et al (2009) Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell 17(2):290–298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guha A, Vasconcelos M, Cai Y et al (2012) Neuroepithelial body microenvironment is a niche for a distinct subset of Clara-like precursors in the developing airways. Proc Natl Acad Sci USA 109(31):12592–12597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guseh JS, Bores SA, Stanger BZ et al (2009) Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development (Camb) 136(10):1751–1759

    Article  CAS  Google Scholar 

  • Harris-Johnson KS, Domyan ET, Vezina CM et al (2009) Beta-catenin promotes respiratory progenitor identity in mouse foregut. Proc Natl Acad Sci USA 106(38):16287–16292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hong KU, Reynolds SD, Giangreco A et al (2001) Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol 24(6):671–681

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Udaka N, Yazawa T et al (2000) Basic helix-loop-helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. Development (Camb) 127(18):3913–3921

    CAS  Google Scholar 

  • Jung HS, Oropeza V, Thesleff I (1999) Shh, Bmp-2, Bmp-4 and Fgf-8 are associated with initiation and patterning of mouse tongue papillae. Mech Dev 81(1–2):179–182

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Hara Y, Pineau T et al (1996) The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10(1):60–69

    Article  CAS  PubMed  Google Scholar 

  • Longmire TA, Ikonomou L, Hawkins F et al (2012) Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell 10(4):398–411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma M, Jiang YJ (2007) Jagged2a-notch signaling mediates cell fate choice in the zebrafish pronephric duct. PLoS Genet 3(1):e18

    Article  PubMed Central  PubMed  Google Scholar 

  • Metzger RJ, Klein OD, Martin GR et al (2008) The branching programme of mouse lung development. Nature (Lond) 453(7196):745–750

    Article  CAS  Google Scholar 

  • Min H, Danilenko DM, Scully SA et al (1998) Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev 12(20):3156–3161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Minoo P, Su G, Drum H et al (1999) Defects in tracheoesophageal and lung morphogenesis in Nkx2.1(−/−) mouse embryos. Dev Biol 209(1):60–71

    Article  CAS  PubMed  Google Scholar 

  • Monaghan AP, Kaestner KH, Grau E et al (1993) Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3 alpha, beta and gamma genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development (Camb) 119(3):567–578

    CAS  Google Scholar 

  • Morimoto M, Liu Z, Cheng HT et al (2010) Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate. J Cell Sci 123(Pt 2):213–224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morimoto M, Nishinakamura R, Saga Y et al (2012) Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development (Camb) 139(23):4365–4373

    Article  CAS  Google Scholar 

  • Morrisey EE, Hogan BL (2010) Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 18(1):8–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okubo T, Hogan BL (2004) Hyperactive Wnt signaling changes the developmental potential of embryonic lung endoderm. J Biol 3(3):11

    Article  PubMed Central  PubMed  Google Scholar 

  • Perl AK, Wert SE, Nagy A et al (2002) Early restriction of peripheral and proximal cell lineages during formation of the lung. Proc Natl Acad Sci USA 99(16):10482–10487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Post LC, Ternet M, Hogan BL (2000) Notch/Delta expression in the developing mouse lung. Mech Dev 98(1–2):95–98

    Article  CAS  PubMed  Google Scholar 

  • Que J, Luo X, Schwartz RJ et al (2009) Multiple roles for Sox2 in the developing and adult mouse trachea. Development (Camb) 136(11):1899–1907

    Article  CAS  Google Scholar 

  • Rawlins EL, Ostrowski LE, Randell SH et al (2007) Lung development and repair: contribution of the ciliated lineage. Proc Natl Acad Sci USA 104(2):410–417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rossi JM, Dunn NR, Hogan BL et al (2001) Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev 15(15):1998–2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sasaki H, Hogan BL (1994) HNF-3 beta as a regulator of floor plate development. Cell 76(1):103–115

    Article  CAS  PubMed  Google Scholar 

  • Sato T, van Es JH, Snippert HJ et al (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature (Lond) 469(7330):415–418

    Article  CAS  Google Scholar 

  • Sekine K, Ohuchi H, Fujiwara M et al (1999) Fgf10 is essential for limb and lung formation. Nat Genet 21(1):138–141

    Article  CAS  PubMed  Google Scholar 

  • Serls AE, Doherty S, Parvatiyar P et al (2005) Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung. Development (Camb) 132(1):35–47

    Article  CAS  Google Scholar 

  • Shan L, Aster JC, Sklar J et al (2007) Notch-1 regulates pulmonary neuroendocrine cell differentiation in cell lines and in transgenic mice. Am J Physiol Lung Cell Mol Physiol 292(2):L500–L509

    Article  CAS  PubMed  Google Scholar 

  • Song H, Yao E, Lin C et al (2012) Functional characterization of pulmonary neuroendocrine cells in lung development, injury, and tumorigenesis. Proc Natl Acad Sci USA 109(43):17531–17536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsao PN, Vasconcelos M, Izvolsky KI et al (2009) Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development (Camb) 136(13):2297–2307

    Article  CAS  Google Scholar 

  • Vooijs M, Ong CT, Hadland B et al (2007) Mapping the consequence of Notch1 proteolysis in vivo with NIP-CRE. Development (Camb) 134(3):535–544

    Article  CAS  Google Scholar 

  • Wan H, Kaestner KH, Ang SL et al (2004) Foxa2 regulates alveolarization and goblet cell hyperplasia. Development (Camb) 131(4):953–964

    Article  CAS  Google Scholar 

  • Wandzioch E, Zaret KS (2009) Dynamic signaling network for the specification of embryonic pancreas and liver progenitors. Science 324(5935):1707–1710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weinstein M, Xu X, Ohyama K et al (1998) FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development (Camb) 125(18):3615–3623

    CAS  Google Scholar 

  • Xu CR, Cole PA, Meyers DJ et al (2011) Chromatin “prepattern” and histone modifiers in a fate choice for liver and pancreas. Science 332(6032):963–966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang S, Loch AJ, Radtke F et al (2013) Jagged1 is the major regulator of notch-dependent cell fate in proximal airways. Dev Dyn 242(6):678–86

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuru Morimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Morimoto, M. (2014). Building Functional Internal Organs from a Naïve Endodermal Sheet. In: Kondoh, H., Kuroiwa, A. (eds) New Principles in Developmental Processes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54634-4_5

Download citation

Publish with us

Policies and ethics