Skip to main content

Fins and Limbs: Emergence of Morphological Differences

  • Chapter
  • First Online:
New Principles in Developmental Processes

Abstract

Paired appendages (fins and limbs) are regarded as distinct morphologies by classification of skeletal patterns. On the basis of sequential orientation and articulation of tetrapod limb bones, we can understand that stylopodial/zeugopodial skeletal elements are present in an extinct and extant basal sarcopterygian (coelacanth and lungfish) fin and that only nonhomologous radial bones exist in a zebrafish fin. From these phylogenetic views, morphological differences between fins and limbs and paleontological discoveries of limb-like fins of basal sarcopterygians emphasize both the homologous skeletal elements and tetrapodomorph evolution. During embryogenesis, on the other hand, initial fin development requires apical ectodermal ridge (AER) signals as does tetrapod limb development, and then the AER itself starts to transform into a fin-specific structure, the apical fold (AF). HoxD genes are involved in fish fin development as in tetrapod limb development, but the resultant skeletal patterns of fins are very different from those of limbs as a result of differences in regulation of genes such as HoxD. From these developmental aspects, we can understand that both fins and limbs develop by common mechanisms, including fibroblast growth factors (FGFs) from the AER and Hox genes, and that alteration of basic mechanisms by heterochronic/heterometric change in expression of AER/AF signals and Hox gives rise to morphological differences among paired appendages. In this chapter, we describe homology and difference in several research fields (genome commonality/difference, developmental commonality/difference, and anatomical or paleontological correspondence/difference) and especially explain a scenario of fin-to-limb evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn D, Ho RK (2008) Tri-phasic expression of posterior Hox genes during development of pectoral fins in zebrafish: implications for the evolution of vertebrate paired appendages. Dev Biol 322(1):220–233. doi:10.1016/j.ydbio.2008.06.032

    Article  CAS  PubMed  Google Scholar 

  • Amemiya CT, Alfoldi J, Lee AP, Fan S, Philippe H, Maccallum I, Braasch I, Manousaki T, Schneider I, Rohner N, Organ C, Chalopin D, Smith JJ, Robinson M, Dorrington RA, Gerdol M, Aken B, Biscotti MA, Barucca M, Baurain D, Berlin AM, Blatch GL, Buonocore F, Burmester T, Campbell MS, Canapa A, Cannon JP, Christoffels A, De Moro G, Edkins AL, Fan L, Fausto AM, Feiner N, Forconi M, Gamieldien J, Gnerre S, Gnirke A, Goldstone JV, Haerty W, Hahn ME, Hesse U, Hoffmann S, Johnson J, Karchner SI, Kuraku S, Lara M, Levin JZ, Litman GW, Mauceli E, Miyake T, Mueller MG, Nelson DR, Nitsche A, Olmo E, Ota T, Pallavicini A, Panji S, Picone B, Ponting CP, Prohaska SJ, Przybylski D, Saha NR, Ravi V, Ribeiro FJ, Sauka-Spengler T, Scapigliati G, Searle SM, Sharpe T, Simakov O, Stadler PF, Stegeman JJ, Sumiyama K, Tabbaa D, Tafer H, Turner-Maier J, van Heusden P, White S, Williams L, Yandell M, Brinkmann H, Volff JN, Tabin CJ, Shubin N, Schartl M, Jaffe DB, Postlethwait JH, Venkatesh B, Di Palma F, Lander ES, Meyer A, Lindblad-Toh K (2013) The African coelacanth genome provides insights into tetrapod evolution. Nature (Lond) 496(7445):311–316. doi:10.1038/nature12027

    Article  CAS  Google Scholar 

  • Boisvert CA, Mark-Kurik E, Ahlberg PE (2008) The pectoral fin of Panderichthys and the origin of digits. Nature (Lond) 456(7222):636–638. doi:10.1038/nature07339

    Article  CAS  Google Scholar 

  • Coates MI, Jeffery JE, Rut M (2002) Fins to limbs: what the fossils say. Evol Dev 4(5):390–401

    Article  PubMed  Google Scholar 

  • Cserjesi P, Lilly B, Bryson L, Wang Y, Sassoon DA, Olson EN (1992) MHox: a mesodermally restricted homeodomain protein that binds an essential site in the muscle creatine kinase enhancer. Development (Camb) 115(4):1087–1101

    CAS  Google Scholar 

  • Dane PJ, Tucker JB (1985) Modulation of epidermal cell shaping and extracellular matrix during caudal fin morphogenesis in the zebra fish Brachydanio rerio. J Embryol Exp Morphol 87:145–161

    CAS  PubMed  Google Scholar 

  • Freitas R, Gomez-Marin C, Wilson JM, Casares F, Gomez-Skarmeta JL (2012) Hoxd13 contribution to the evolution of vertebrate appendages. Dev Cell 23(6):1219–1229. doi:10.1016/j.devcel.2012.10.015

    Article  CAS  PubMed  Google Scholar 

  • Grandel H, Draper BW, Schulte-Merker S (2000) dackel acts in the ectoderm of the zebrafish pectoral fin bud to maintain AER signaling. Development (Camb) 127(19):4169–4178

    CAS  Google Scholar 

  • Hall BK (2005) Bones and cartilage: developmental and evolutionary skeletal biology. Elsevier Academic, London

    Google Scholar 

  • Harris MP, Rohner N, Schwarz H, Perathoner S, Konstantinidis P, Nusslein-Volhard C (2008) Zebrafish eda and edar mutants reveal conserved and ancestral roles of ectodysplasin signaling in vertebrates. PLoS Genet 4(10):e1000206. doi:10.1371/journal.pgen.1000206

    Article  PubMed Central  PubMed  Google Scholar 

  • Hernández-Vega A, Minguillón C (2011) The Prx1 limb enhancers: targeted gene expression in developing zebrafish pectoral fins. Dev Dyn 240(8):1977–1988. doi:10.1002/dvdy.22678

    Article  PubMed  Google Scholar 

  • Hodgkinson VS, Ericsson R, Johanson Z, Joss J (2009) The apical ectodermal ridge in the pectoral fin of the Australian lungfish (Neoceratodus forsteri): keeping the fin to limb transition in the fold. Acta Zool 90:253–263. doi:10.1111/j.1463-6395.2008.00349.x

    Article  Google Scholar 

  • Johanson Z, Joss J, Boisvert CA, Ericsson R, Sutija M, Ahlberg PE (2007) Fish fingers: digit homologues in sarcopterygian fish fins. J Exp Zool B Mol Dev Evol 308(6):757–768. doi:10.1002/jez.b.21197

    Article  PubMed  Google Scholar 

  • Mariani FV, Martin GR (2003) Deciphering skeletal patterning: clues from the limb. Nature (Lond) 423(6937):319–325. doi:10.1038/nature01655

    Article  CAS  Google Scholar 

  • Martin JF, Olson EN (2000) Identification of a prx1 limb enhancer. Genesis 26(4):225–229. doi:10.1002/(SICI)1526-968X(200004)26:4<225::AID-GENE10>3.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  • Norton WH, Ledin J, Grandel H, Neumann CJ (2005) HSPG synthesis by zebrafish Ext2 and Extl3 is required for Fgf10 signalling during limb development. Development (Camb) 132(22):4963–4973. doi:10.1242/dev.02084

    Article  CAS  Google Scholar 

  • Ohuchi H, Nakagawa T, Yamamoto A, Araga A, Ohata T, Ishimaru Y, Yoshioka H, Kuwana T, Nohno T, Yamasaki M, Itoh N, Noji S (1997) The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development (Camb) 124(11):2235–2244

    CAS  Google Scholar 

  • Sakamoto K, Onimaru K, Munakata K, Suda N, Tamura M, Ochi H, Tanaka M (2009) Heterochronic shift in Hox-mediated activation of sonic hedgehog leads to morphological changes during fin development. PLoS One 4(4):e5121. doi:10.1371/journal.pone.0005121

    Article  PubMed Central  PubMed  Google Scholar 

  • Shimada A, Kawanishi T, Kaneko T, Yoshihara H, Yano T, Inohaya K, Kinoshita M, Kamei Y, Tamura K, Takeda H (2013) Trunk exoskeleton in teleosts is mesodermal in origin. Nat Commun 4:1639. doi:10.1038/ncomms2643

    Article  PubMed Central  PubMed  Google Scholar 

  • Shubin NH, Daeschler EB, Jenkins FA Jr (2006) The pectoral fin of Tiktaalik roseae and the origin of the tetrapod limb. Nature (Lond) 440(7085):764–771. doi:10.1038/nature04637

    Article  CAS  Google Scholar 

  • Smith M, Hickman A, Amanze D, Lumsden A, Thorogood P (1994) Trunk neural crest origin of caudal fin mesenchyme in the zebrafish Brachydanio rerio. Proc R Soc Lond B Biol Sci 256(1346):137–145

    Article  Google Scholar 

  • Suzuki M, Satoh A, Ide H, Tamura K (2007) Transgenic Xenopus with prx1 limb enhancer reveals crucial contribution of MEK/ERK and PI3K/AKT pathways in blastema formation during limb regeneration. Dev Biol 304(2):675–686. doi:10.1016/j.ydbio.2007.01.019

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Yonei-Tamura S, Yano T, Yokoyama H, Ide H (2008) The autopod: its formation during limb development. Dev Growth Differ 50(suppl 1):S177–S187. doi:10.1111/j.1440-169X.2008.01020.x

    Article  PubMed  Google Scholar 

  • Tarchini B, Duboule D, Kmita M (2006) Regulatory constraints in the evolution of the tetrapod limb anterior–posterior polarity. Nature (Lond) 443(7114):985–988. doi:10.1038/nature05247

    Article  CAS  Google Scholar 

  • Thorogood P (1991) The development of the teleost fin and implications for our understanding of tetrapod evolution. Developmental patterning of the vertebrate limb. Plenum, London, pp 347–354

    Google Scholar 

  • Witten PE, Huysseune A (2007) Mechanisms of chondrogenesis and osteogenesis in fins. In: Witten PE, Huysseune A, Hall B (eds) Fins into limbs: evolution, development, and transformation. University of Chicago Press, Chicago, pp 79–92

    Google Scholar 

  • Yano T, Tamura K (2013) The making of differences between fins and limbs. J Anat 222(1):100–113. doi:10.1111/j.1469-7580.2012.01491.x

    Article  PubMed  Google Scholar 

  • Yano T, Abe G, Yokoyama H, Kawakami K, Tamura K (2012) Mechanism of pectoral fin outgrowth in zebrafish development. Development (Camb) 139(16):2916–2925. doi:10.1242/dev.075572

    Article  CAS  Google Scholar 

  • Yonei-Tamura S, Endo T, Yajima H, Ohuchi H, Ide H, Tamura K (1999) FGF7 and FGF10 directly induce the apical ectodermal ridge in chick embryos. Dev Biol 211(1):133–143. doi:10.1006/dbio.1999.9290

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Yano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Yano, T., Matsubara, H., Egawa, S., Onodera, K., Tamura, K. (2014). Fins and Limbs: Emergence of Morphological Differences. In: Kondoh, H., Kuroiwa, A. (eds) New Principles in Developmental Processes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54634-4_22

Download citation

Publish with us

Policies and ethics