Skip to main content

Neurogenesis in the Adult Rabbit: From Olfactory System to Cerebellum

  • Chapter
Neurogenesis in the Adult Brain I
  • 1419 Accesses

Abstract

Adult neurogenesis is a feature that is phylogenetically highly conserved, yet most of the current knowledge in this field is based on laboratory rodents. In addition to the differences among vertebrates, remarkable peculiarities are also emerging in the location and structural and functional features of neurogenic ­systems in mammals. Although the orders Lagomorpha and Rodentia are quite similar, unexpected features of structural plasticity and neurogenesis have been found to occur in the rabbit central nervous system. The structural and temporal characteristics of protracted and persistent neurogenesis in rabbits are herewith addressed. Attention is focused on the subventricular zone cytoarchitecture and extensions, as well as on processes of persistent neurogenesis that have been recently demonstrated to occur in the striatum and in the cerebellum. The existence of neural cell progenitors persisting within the rabbit brain parenchyma (so-called nonneurogenic in rodents) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altman J, Bayer SA (1997) Development of the cerebellar system. CRC Press, Boca Raton, USA

    Google Scholar 

  • Alvarez-Buylla A, Garcìa-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629–634

    PubMed  CAS  Google Scholar 

  • Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41:881–890

    Article  PubMed  CAS  Google Scholar 

  • Arvidsson A, Collin T, Kirik D et al (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    Article  PubMed  CAS  Google Scholar 

  • Bédard A, Cossette M, Lévesque M, Parent A (2002) Proliferating cells can differentiate into neurons in the striatum of normal adult monkey. Neurosci Lett 328:213–216

    Article  PubMed  Google Scholar 

  • Berardi N, Pizzorusso T, Maffei L (2000) Critical periods during sensory development. Curr Opin Neurobiol 10:138–145

    Article  PubMed  CAS  Google Scholar 

  • Bonfanti L (2006) PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol 80:129–164

    Article  PubMed  CAS  Google Scholar 

  • Bonfanti L, Ponti G (2008) Adult neurogenesis and the New Zealand white rabbit. Vet J 175:310–331

    Article  PubMed  Google Scholar 

  • Bonfanti L, Olive S, Poulain DA, Theodosis, DT (1992) Mapping of the distribution of polysialylated neural cell adhesion molecule throughout the central nervous system of the adult rat: an immunohistochemical study. Neuroscience 49:419–436

    Article  PubMed  CAS  Google Scholar 

  • Brown JP, Couillard-Després S, Cooper-Kuhn CM et al (2003)  Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10

    Article  PubMed  CAS  Google Scholar 

  • Butt AM, Hamilton N, Hubbard P, Pugh M, Ibrahim M (2005) Synantocytes: the fifth element. J Anat 207:695–706

    Article  PubMed  Google Scholar 

  • Chenn A, Walsh CA (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297:365–369

    Article  PubMed  CAS  Google Scholar 

  • Curtis MA, Kam M, Nannmark U et al (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249

    Article  PubMed  CAS  Google Scholar 

  • Dayer AG, Cleaver KM, Abouantoun T, Cameron HA (2005) New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol 168, 415–427

    Article  PubMed  CAS  Google Scholar 

  • Doetsch F, Garcìa-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5041

    PubMed  CAS  Google Scholar 

  • Douzery EJ, Huchon D (2004) Rabbits, if anything, are likely Glires. Mol Phylogenet Evol 33:922–935

    Article  PubMed  CAS  Google Scholar 

  • Engelkamp D, Rashbass P, Seawright A, van Heyningen V (1999) Role of Pax6 in development of the cerebellar system. Development 126:3585–3596

    CAS  Google Scholar 

  • Fallon J, Reid S, Kinyamu R et al (2000) In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc Natl Acad Sci USA 97:14686–14691

    Article  PubMed  CAS  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Verdugo JM, Ferron S et al (2002) The proliferative ventricular zone in adult vertebrates: a comparative study using reptiles, birds, and mammals. Brain Res Bull 57:765–775

    Article  PubMed  Google Scholar 

  • Gould E (2007) How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 8:481–488

    Article  PubMed  CAS  Google Scholar 

  • Gould E, Reeves AJ, Graziano MS, Gross CG (1999)  Neurogenesis in the neocortex of adult primates. Science 286:548–552

    Article  PubMed  CAS  Google Scholar 

  • Gould E, Vail N, Wagers M, Gross CG (2001) Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc Natl Acad Sci USA 98:10910–10917

    Article  PubMed  CAS  Google Scholar 

  • Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272–303

    Article  PubMed  Google Scholar 

  • Komuro H, Yacubova E, Yacubova E, Rakic P (2001) Mode and tempo of tangential cell migration in the cerebellar external granule layer. J Neurosci 21:527–540

    PubMed  CAS  Google Scholar 

  • Kondo T, Raff M (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289:1754–1757

    Article  PubMed  CAS  Google Scholar 

  • Kornack DR, Rakic P (2001) The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci USA 98:4752–4757

    Article  PubMed  CAS  Google Scholar 

  • Kriegstein A, Noctor S, Martinez-Cerdeno V (2006) Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci 7:883–890

    Article  PubMed  CAS  Google Scholar 

  • Leonhardt H (1972) Topographic distribution of subependymal basement labyrinths of the ventricular system of brain in rabbit. Z Zellforsch Mikrosk Anat 127:392–406

    Article  PubMed  CAS  Google Scholar 

  • Leto K, Bartolini A, Rossi F (2008) Neurogenesis in the cerebellum of rodents. In: Bonfanti L, ed. Postnatal and Adult Neurogenesis. Research Signpost, Trivandrum, India pp. 63–81

    Google Scholar 

  • Lindsey BW, Tropepe V (2006) A comparative framework for understanding the biological principles of adult neurogenesis. Prog Neurobiol 80:281–307

    Article  PubMed  CAS  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    Article  PubMed  CAS  Google Scholar 

  • Lois C, Garcìa-Verdugo J, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981

    Article  PubMed  CAS  Google Scholar 

  • Luzzati F, Peretto P, Aimar P et al (2003) Glia-independent chains of neuroblasts through the subcortical parenchyma of the adult rabbit brain. Proc Natl Acad Sci USA 100:13036–13041

    Article  PubMed  CAS  Google Scholar 

  • Luzzati F, De Marchis S, Fasolo A, Peretto P (2006) Neurogenesis in the caudate nucleus of the adult rabbit. J Neurosci 26:609–621

    Article  PubMed  CAS  Google Scholar 

  • Luzzati F, De Marchis S, Fasolo A, Peretto P (2007) Adult neurogenesis and local neuronal progenitors in the striatum. Neurodegen Dis 4:322–327

    Article  Google Scholar 

  • Maricich SM, Herrup K (1999) Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J Neurobiol 41:281–294

    Article  PubMed  CAS  Google Scholar 

  • McFarland WL, Morgane PJ, Jacobs MS (1969) Ventricular system of the brain of the dolphin, Tursiops truncatus, with comparative anatomical observations and relations to brain specializations. J Comp Neurol 135:275–368

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama A (2007) Polydendrocytes: NG2 cells with many roles in development and repair of the CNS. Neuroscientist 13:62–76

    Article  PubMed  CAS  Google Scholar 

  • Nothias F, Fischer I, Murray M et al (1996) Expression of a phosphorylated isoform of MAP1B is maintained in adult central nervous system areas that retain capacity for structural plasticity. J Comp Neurol 368:317–334

    Article  PubMed  CAS  Google Scholar 

  • Palmer TD, Markakis EA, Willhoite AR, Safar F, Gage, FH (1999) Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J Neurosci 19:8487–8497

    PubMed  CAS  Google Scholar 

  • Peretto P, Merighi A, Fasolo A, Bonfanti L (1997) Glial tubes in the rostral migratory stream of the adult rat. Brain Res Bull 42:9–21

    Article  PubMed  CAS  Google Scholar 

  • Peretto P, Giachino C, Aimar P et al (2005) Chain formation and glial tube assembly in the shift from neonatal to adult subventricular zone of the rodent forebrain. J Comp Neurol 487:407–427

    Article  PubMed  Google Scholar 

  • Ponti G, Peretto P, Bonfanti L (2006a) A subpial, transitory germinal zone forms chains of neuronal precursors in the rabbit cerebellum. Dev Biol 294:168–180

    Article  PubMed  CAS  Google Scholar 

  • Ponti G, Aimar P, Bonfanti L (2006b) Cellular composition and cytoarchitecture of the rabbit subventricular zone (SVZ) and its extensions in the forebrain. J Comp Neurol 498:491–507

    Article  PubMed  CAS  Google Scholar 

  • Ponti G, Peretto P, Bonfanti L (2008) Genesis of neuronal and glial progenitors in the cerebellar cortex of peripuberal and adult rabbits. PLoS ONE 3:e2366

    Article  PubMed  Google Scholar 

  • Quinones-Hinojosa A, Sanai N, Soriano-Navarro M et al (2006) Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 494:415–434

    Article  PubMed  Google Scholar 

  • Rodriguez-Perez LM, Perez-Martin M, Jimenez, AJ et al (2003) Immunocytochemical characterization of the wall of the bovine ventricle. Cell Tissue Res 314:325–335

    Article  PubMed  CAS  Google Scholar 

  • Sanai N, Tramontin AD, Quinones-Hinojosa A et al (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744

    Article  CAS  Google Scholar 

  • Sanchez-Villagra MR, Sultan F (2001) The cerebellum at birth in therian mammals, with special reference to rodents. Brain Behav Evol 59:101–113

    Article  Google Scholar 

  • Seri B, Garcìa-Verdugo JM, Collaudo-Morente L et al (2004) Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 478:359–378

    Article  PubMed  Google Scholar 

  • Takebayashi H, Nabeshima Y, Yoshida, S et al (2002) The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr Biol 12:1157–1163

    Article  PubMed  CAS  Google Scholar 

  • Temple S (2001) The development of neural stem cells. Nature 414:112–117

    Article  CAS  Google Scholar 

  • Viereck C, Tucker RP, Matus A (1989) The adult rat olfactory system expresses microtubule-associated proteins found in the developing brain. J Neurosci 9:3547–3557

    PubMed  CAS  Google Scholar 

  • Weisheit G, Gliem M, Endl E et al (2006) Postnatal development of the murine cerebellar cortex: formation and early dispersal of basket, stellate and Golgi neurons. Eur J Neurosci 24:466–478

    Article  PubMed  Google Scholar 

  • Wexler E, Palmer T (2002) Where, oh where, have my stem cells gone? Trends Neurosci 25:225–227

    Article  PubMed  CAS  Google Scholar 

  • Weyer A, Schilling K (2003) Developmental and cell type-specific expression of the neuronal marker NeuN in the murine cerebellum. J Neurosci Res 73:400–409

    Article  PubMed  CAS  Google Scholar 

  • Wu HY, Dawson MR, Reynolds R, Hardy RJ (2001) Expression of QKI proteins and MAP1B identifies actively myelinating oligodendrocytes in adult rat brain. Mol Cell Neurosci 17:292–302

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki T, Kawaji K, Ono K et al (2001) Pax6 regulates granule cell polarization during parallel fiber formation in the developing cerebellum. Development 128:3133–3144

    CAS  Google Scholar 

  • Zhou Q, Anderson DJ (2002) The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109:61–73

    Article  PubMed  CAS  Google Scholar 

  • Zupanc GK (2006) Neurogenesis and neuronal regeneration in the adult fish brain. J Comp Physiol A 192:649–670

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Compagnia di San Paolo (Progetto NEUROTRANSPLANT-2004.2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Bonfanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Ponti, G., Luzzati, F., Peretto, P., Bonfanti, L. (2011). Neurogenesis in the Adult Rabbit: From Olfactory System to Cerebellum. In: Seki, T., Sawamoto, K., Parent, J.M., Alvarez-Buylla, A. (eds) Neurogenesis in the Adult Brain I. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53933-9_13

Download citation

Publish with us

Policies and ethics