Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 265))

Abstract

It was recently observed that asymptotic theory of high-dimensional convexity is extended in a very broad sense to the category of log-concave measures, and moreover, this extension is needed to understand and to solve some problems of asymptotic theory of high-dimensional convexity proper. Many important geometric inequalities were interpreted and extended to such category. On the other hand, some typical probabilisitic results are interpreted and proved in a geometric framework. Even more importantly, such extension to the log-concave category was needed to solve some central problems of a purely geometric nature. The goal of this article is to outline this development and to demonstrate examples of results which confirm this picture.

Supported in part by an Israel Science Foundation Grant and by the Minkowski Minerva Centre for Geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrov, A.D, On the theory of mixed volumes of convex bodies IV: Mixed discriminants and mixed volumes (in Russian), Math. Sb. N.S. 3 (1938), 227–251.

    Google Scholar 

  2. Anttila, M., Ball, K., Perissinaki, I., The central limit problem for convex bodies, Trans. Amer. Math. Soc. 355:12 (2003), 4723–4735.

    Article  MATH  MathSciNet  Google Scholar 

  3. Artstein-Avidan, S., Klartag, B., Milman, V., The Santaló point of a function, and a functional form of the Santalo inequality, Mathematika 51:1–2 (2004), 33–48.

    Article  MATH  MathSciNet  Google Scholar 

  4. Ball, K., Isometric problems in â„“p and sections of convex sets, PhD dissertation, Cambridge (1986).

    Google Scholar 

  5. Ball, K., Logarithmically concave functions and sections of convex sets in R n, Studia Math. 88:1 (1988), 69–84.

    MATH  MathSciNet  Google Scholar 

  6. Bobkov, S.G., Large deviations and isoperimetry over convex probability measures, preprint (2006).

    Google Scholar 

  7. Borell, C., Convex measures on locally convex spaces, Ark. Mat. 12 (1974), 239–252.

    Article  MATH  MathSciNet  Google Scholar 

  8. Bourgain, J., Milman, V.D., Sections euclidiennes et volume des corps symétriques convexes dans ℝn (in French), C.R. Acad. Sci. Paris Ser. I Math. 300:13 (1985), 435–438.

    Google Scholar 

  9. Bourgain, J., Milman, V.D., New volume ratio properties for convex symmetric bodies in ℝn, Invent. Math. 88:2 (1987), 319–340.

    Article  MATH  MathSciNet  Google Scholar 

  10. Brehm, U., Voigt, J., Asymptotics of cross sections for convex bodies, Beiträge Algebra Geom. 41:2 (2000), 437–454.

    MATH  MathSciNet  Google Scholar 

  11. Cordero-Erausquin, D., Santaló’s inequality on ℂn by complex interpolation. C.R. Math. Acad. Sci. Paris 334:9 (2002), 767–772.

    MATH  MathSciNet  Google Scholar 

  12. Fradelizi, M., Meyer, M., Some functional forms of Blaschke-Santaló inequality, Math. Z. 256 (2007), no. 2, 379–395.

    Article  MATH  MathSciNet  Google Scholar 

  13. Giannopoulos, A.A., Milman, V.D., Euclidean structure in finite dimensional normed spaces, Handbook of the geometry of Banach spaces, I, North-Holland, Amsterdam (2001), 707–779.

    Chapter  Google Scholar 

  14. Giannopoulos, A.A., Milman, V.D., Asymptotic convex geometry: short overview, Different faces of geometry, Int.Math. Ser. (N.Y.) 3, Kluwer/Plenum, New York (2004), 87–162.

    Google Scholar 

  15. Gromov, M., Dimension, nonlinear spectra and width, Geometric Aspects of Functional Analysis (1986/87), 132–184, Lecture Notes in Math., 1317, Springer, Berlin, 1988.

    Google Scholar 

  16. Gromov, M., Milman, V.D., Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces, Compositio Math. 62:3 (1987), 263–282.

    MATH  MathSciNet  Google Scholar 

  17. Hörmander, L., Notions of convexity, Progress in Mathematics 127, Birkhäuser Boston Inc., Boston, MA, 1994.

    Google Scholar 

  18. Klartag, B., On convex perturbations with a bounded isotropic constant, GAFA, Geom. funct. anal. 16:6 (2006), 1274–1290.

    Article  MATH  MathSciNet  Google Scholar 

  19. Klartag, B., Marginals of geometric inequalities, GAFA Seminar, Springer Lect. Notes in Math. 1910 (2007), 133–166.

    Google Scholar 

  20. Klartag, B., A central limit theorem for convex sets, Invent. Math. 168:1 (2007), 91–131.

    Article  MATH  MathSciNet  Google Scholar 

  21. Klartag, B., Power law estimates in the central limit theorem for convex sets, J. Funct. Anal. 245:1 (2007), 284–310.

    Article  MATH  MathSciNet  Google Scholar 

  22. Klartag, B., Milman, V.D., Geometry of log-concave functions and measures, Geom. Dedicata 112 (2005), 169–182.

    Article  MATH  MathSciNet  Google Scholar 

  23. Kuperberg, G., From the Mahler conjecture to Gauss linking intergrals, GAFA, Geom. funct. anal., to appear.

    Google Scholar 

  24. Lindenstrauss, J., Milman, V.D., The local theory of normed spaces and its applications to convexity, Handbook of Convex geometry A,B, North-Holland, Amsterdam (1993), 1149–1220.

    Google Scholar 

  25. Meyer, M, Pajor, A., Sections of the unit ball of L pn . J. Funct. Anal. 80:1 (1988), 109–123.

    Article  MATH  MathSciNet  Google Scholar 

  26. Milman, V.D., Geometric theory of Banach spaces. II Geometry of the unit ball (in Russian), Uspehi Mat. Nauk 26 (1971), no. 6(162), 73–149.

    MathSciNet  Google Scholar 

  27. Milman, V.D., A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies (in Russian), Funkcional. Anal. i Priložen. 5:4 (1971), 28–37.

    MathSciNet  Google Scholar 

  28. Milman, V.D., Almost Euclidean quotient spaces of subspaces of a finitedimensional normed space, Proc. Amer. Math. Soc. 94:3 (1985), 445–449.

    Article  MATH  MathSciNet  Google Scholar 

  29. Milman, V.D., Inégalité de Brunn-Minkowski inverse et applications à la theorie locale des espaces normés [An inverse form of the Brunn-Minkowski inequality, with applications to the local theory of normed spaces], C.R. Acad. Sci. Paris Ser. I Math. 302:1 (1986), 25–28.

    Google Scholar 

  30. Milman, V., Some applications of duality relations, Geometric Aspects of Functional Analysis (1989–90), 13–40, Lecture Notes in Math., 1469, Springer, Berlin, 1991.

    Google Scholar 

  31. Milman, V., Surprising geometric phenomena in high-dimensional convexity theory, European Congress of Mathematics, Vol. II (Budapest, 1996), 73–91, Progr. Math. 169, Birkhäuser, Basel, 1998.

    Google Scholar 

  32. Milman, V., Topics in asymptotic geometric analysis, GAFA 2000 (Tel Aviv, 1999). Geom. Funct. Anal. 2000, Special Volume, Part II, 792–815.

    Google Scholar 

  33. Milman, V.D., Phenomena that occur in high dimensions (in Russian), Uspekhi Mat. Nauk 59:1 (2004), (355), 157–168; English transl. in Russian Math. Surveys 59:1 (2004), 159–169.

    MathSciNet  Google Scholar 

  34. Milman, V.D.; Schechtman, G., Asymptotic Theory of Finite-Dimensional Normed Spaces, with an appendix by M. Gromov, Lecture Notes in Mathematics, 1200. Springer-Verlag, Berlin, 1986, viii+156 pp.

    Google Scholar 

  35. Paouris, G., Concentration of mass on convex bodies GAFA, Geom. funct. anal. 16:5 (2006), 1021–1049.

    Article  MATH  MathSciNet  Google Scholar 

  36. Pisier, G., The Volume of Convex Bodies and Banach Space Geometry. Cambridge Tracts in Mathematics, 94. Cambridge University Press, Cambridge, 1989. xvi+250 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of Alexander (Sasha) Reznikov, a remarkable mathematician with tragic fate, and who called me his advisor, of which I was always proud.

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Milman, V.D. (2007). Geometrization of Probability. In: Kapranov, M., Manin, Y.I., Moree, P., Kolyada, S., Potyagailo, L. (eds) Geometry and Dynamics of Groups and Spaces. Progress in Mathematics, vol 265. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8608-5_15

Download citation

Publish with us

Policies and ethics