Skip to main content

Aspects of gene expression in B cell lymphomas

  • Chapter
Microarrays in Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 498 Accesses

Abstract

Gene expression profiling has been used extensively for the analysis of human lymphomas. Besides the analysis of whole tissue or blood samples, genechip studies have also been applied to lymphoma cells isolated by cell sorting from cell suspensions or by laser microdissection from tissue sections. Such studies were successfully applied to clarify the cellular origin of lymphomas by comparison to normal B cell subsets, to gain insights into pathogenetic mechanisms, to develop molecular classifiers for differential diagnosis, to identify so far unrecognized subgroups among current lymphoma entities, and to establish predictors of prognosis. In our own work, we initially studied gene expression of Hodgkin lymphoma cell lines and revealed, for example, a global downregulation of the B cell gene expression programme and an aberrant expression of multiple receptor tyrosine kinases in these cells. We are now studying gene expression profiles from microdissected tumour cells of Hodgkin lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fend F, Emmert-Buck MR, Chuaqui R, Cole K, Lee J, Liotta LA, Raffeld M (1999) Immuno-LCM: laser capture microdissection of immunostained frozen sections for mRNA analysis. Am J Pathol 154: 61–66

    PubMed  CAS  Google Scholar 

  2. Fend F, Raffeld M (2000) Laser capture microdissection in pathology. J Clin Pathol 53: 666–672

    Article  PubMed  CAS  Google Scholar 

  3. Fink L, Kinfe T, Seeger W, Ermert L, Kummer W, Bohle RM (2000) Immunostaining for cell picking and real-time mRNA quantitation. Am J Pathol 157: 1459–1466

    PubMed  CAS  Google Scholar 

  4. Fink L, Kinfe T, Stein MM, Ermert L, Hanze J, Kummer W, Seeger W, Bohle RM (2000) Immunostaining and laser-assisted cell picking for mRNA analysis. Lab Invest 80: 327–333

    PubMed  CAS  Google Scholar 

  5. Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC, Fisher RI, Braziel RM, Rimsza LM, Grogan TM et al (2004) Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 351: 2159–2169

    Article  PubMed  CAS  Google Scholar 

  6. Küppers R, Zhao M, Hansmann ML, Rajewsky K (1993) Tracing B cell development in human germinal centres by molecular analysis of single cells picked from histological sections. EMBO J 12: 4955–4967

    PubMed  Google Scholar 

  7. Kenzelmann M, Klaren R, Hergenhahn M, Bonrouhi M, Grone HJ, Schmid W, Schutz G (2004) High-accuracy amplification of nanogram total RNA amounts for gene profiling. Genomics 83: 550–558

    Article  PubMed  CAS  Google Scholar 

  8. Luo L, Salunga RC, Guo H, Bittner A, Joy KC, Galindo JE, Xiao H, Rogers KE, Wan JS, Jackson MR et al (1999) Gene expression profiles of laser-captured adjacent neuronal subtypes. Nat Med 5: 117–122

    Article  PubMed  CAS  Google Scholar 

  9. Luzzi V, Holtschlag V, Watson MA (2001) Expression profiling of ductal carcinoma in situ by laser capture microdissection and high-density oligonucleotide arrays. Am J Pathol 158: 2005–2010

    PubMed  CAS  Google Scholar 

  10. Luzzi V, Mahadevappa M, Raja R, Warrington JA, Watson MA (2003) Accurate and reproducible gene expression profiles from laser capture microdissection, transcript amplification, and high density oligonucleotide microarray analysis. J Mol Diagn 5: 9–14

    PubMed  CAS  Google Scholar 

  11. McClintick JN, Jerome RE, Nicholson CR, Crabb DW, Edenberg HJ (2003) Reproducibility of oligonucleotide arrays using small samples. BMC Genomics 4: 4

    Article  PubMed  Google Scholar 

  12. Ohyama H, Zhang X, Kohno Y, Alevizos I, Posner M, Wong DT, Todd R (2000) Laser capture microdissection-generated target sample for high-density oligonucleotide array hybridization. Biotechniques 29: 530–536

    PubMed  CAS  Google Scholar 

  13. Wilson CL, Pepper SD, Hey Y, Miller CJ (2004) Amplification protocols introduce systematic but reproducible errors into gene expression studies. Biotechniques 36: 498–506

    PubMed  CAS  Google Scholar 

  14. Frank M, Döring C, Metzler D, Eckerle S, Hansmann ML (2007) Global gene expression profiling of formalin-fixed paraffin-embedded tumor samples: a comparison to snap-frozen material using oligonucleotide microarrays. Virchows Arch 450: 699–711

    Article  PubMed  CAS  Google Scholar 

  15. Hartmann CH, Klein CA (2006) Gene expression profiling of single cells on large-scale oligonucleotide arrays. Nucleic Acids Res 34: e143

    Article  PubMed  Google Scholar 

  16. Kurimoto K, Yabuta Y, Ohinata Y, Ono Y, Uno KD, Yamada RG, Ueda HR, Saitou M (2006) An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res 34: e42

    Article  PubMed  Google Scholar 

  17. Dafforn A, Chen P, Deng G, Herrler M, Iglehart D, Koritala S, Lato S, Pillarisetty S, Purohit R, Wang M et al (2004) Linear mRNA amplification from as little as 5 ng total RNA for global gene expression analysis. Biotechniques 37: 854–857

    PubMed  CAS  Google Scholar 

  18. Singh R, Maganti RJ, Jabba SV, Wang M, Deng G, Heath JD, Kurn N, Wangemann P (2005) Microarray-based comparison of three amplification methods for nanogram amounts of total RNA. Am J Physiol Cell Physiol 288: C1179–1189

    Article  PubMed  CAS  Google Scholar 

  19. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu × et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403: 503–511

    Article  PubMed  CAS  Google Scholar 

  20. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, Gascoyne RD, Muller-Hermelink HK, Smeland EB, Giltnane JM et al (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346: 1937–1947

    Article  PubMed  Google Scholar 

  21. Davis RE, Brown KD, Siebenlist U, Staudt LM (2001) Constitutive nuclear factor kap-paB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells.J Exp Med 194: 1861–1874

    Article  PubMed  CAS  Google Scholar 

  22. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M, Reich M, Pinkus GS et al (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 8: 68–74

    Article  PubMed  CAS  Google Scholar 

  23. Robertson MJ, Kahl BS, Vose JM, de Vos S, Laughlin M, Flynn PJ, Rowland K, Cruz JC, Goldberg SL, Musib L et al (2007) Phase II study of enzastaurin, a protein kinase C beta inhibitor, in patients with relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol 25: 1741–1746

    Article  PubMed  CAS  Google Scholar 

  24. Monti S, Savage KJ, Kutok JL, Feuerhake F, Kurtin P, Mihm M, Wu B, Pasqualucci L, Neuberg D, Aguiar RC et al (2005) Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 105: 1851–1861

    Article  PubMed  CAS  Google Scholar 

  25. Dave SS, Fu K, Wright GW, Lam LT, Kluin P, Boerma EJ, Greiner TC, Weisenburger DD, Rosenwald A, Ott G et al (2006) Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med 354:2431–2442

    Article  PubMed  CAS  Google Scholar 

  26. Hummel M, Bentink S, Berger H, Klapper W, Wessendorf S, Barth TF, Bernd HW, Cogliatti SB, Dierlamm J, Feller AC et al (2006) A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med 354: 2419–2430

    Article  PubMed  CAS  Google Scholar 

  27. Rosenwald A, Wright G, Wiestner A, Chan WC, Connors JM, Campo E, Gascoyne RD, GroganTM, Müller-Hermelink HK, Smeland EB et al (2003) The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 3: 185–197

    Article  PubMed  CAS  Google Scholar 

  28. Ross ME, Zhou X, Song G, Shurtleff SA, Girtman K, Williams WK, Liu HC, Mahfouz R, Raimondi SC, Lenny N et al (2003) Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 102: 2951–2959

    Article  PubMed  CAS  Google Scholar 

  29. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, Behm FG, Raimondi SC, Relling MV, Patel A et al (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143

    Article  PubMed  CAS  Google Scholar 

  30. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S, Epstein J, Yaccoby S, Sawyer J, Burington B et al (2006) The molecular classification of multiple myeloma. Blood 108: 2020–2028

    Article  PubMed  CAS  Google Scholar 

  31. Basso K, Liso A, Tiacci E, Benedetti R, Pulsoni A, Foa R, Di Raimondo F, Ambrosetti A, Califano A, Klein U et al (2004) Gene expression profiling of hairy cell leukemia reveals a phenotype related to memory B cells with altered expression of chemokine and adhesion receptors. J Exp Med 199: 59–68

    Article  PubMed  CAS  Google Scholar 

  32. Klein U, Tu Y, Stolovitzky GA, Mattioli M, Cattoretti G, Husson H, Freedman A, Inghirami G, Cro L, Baldini L et al (2001) Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med 194: 1625–1638

    Article  PubMed  CAS  Google Scholar 

  33. Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE, Yu X, Yang L, Pickeral OK, Rassenti LZ, Powell J et al (2001) Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 194: 1639–1647

    Article  PubMed  CAS  Google Scholar 

  34. Küppers R (2005) Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 5: 251–262

    Article  PubMed  Google Scholar 

  35. Küppers R, Klein U, Hansmann M-L, Rajewsky K (1999) Cellular origin of human B-cell lymphomas. N Engl J Med 341: 1520–1529

    Article  PubMed  Google Scholar 

  36. Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M, Marce S, Lopez-Guillermo A, Campo E, Montserrat E (2003) ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 348: 1764–1775

    Article  PubMed  CAS  Google Scholar 

  37. Rassenti LZ, Huynh L, Toy TL, Chen L, Keating MJ, Gribben JG, Neuberg DS, Flinn IW, Rai KR, Byrd JC et al (2004) ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med 351:893–901

    Article  PubMed  CAS  Google Scholar 

  38. Falini B, Tiacci E, Liso A, Basso K, Sabattini E, Pacini R, Foa R, Pulsoni A, Dalla Favera R, Pileri S (2004) Simple diagnostic assay for hairy cell leukaemia by immunocytochemical detection of annexin A1 (ANXA1). Lancet 363: 1869–1870

    Article  PubMed  CAS  Google Scholar 

  39. Küppers R, Klein U, Schwering I, Distler V, Bräuninger A, Cattoretti G, Tu Y, Stolovitzky GA, Califano A, Hansmann ML et al (2003) Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling. J Clin Invest 111: 529–537

    PubMed  Google Scholar 

  40. Renné C, Willenbrock K, Küppers R, Hansmann ML, Bräuninger A (2005) Autocrine and paracrine activated receptor tyrosine kinases in classical Hodgkin lymphoma. Blood 105: 4051–4059

    Article  PubMed  Google Scholar 

  41. Schwering I, Bräuninger A, Klein U, Jungnickel B, Tinguely M, Diehl V, Hansmann ML, Dalla-Favera R, Rajewsky K, Küppers R (2003) Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 101: 1505–1512

    Article  PubMed  CAS  Google Scholar 

  42. Küppers R (2002) Molecular biology of Hodgkin’s lymphoma. Adv Cancer Res 84: 277–312

    Article  PubMed  Google Scholar 

  43. Küppers R, Bräuninger A (2006) Reprogramming of the tumour B-cell phenotype in Hodgkin lymphoma. Trends Immunol 27: 203–205

    Article  PubMed  Google Scholar 

  44. Küppers R, Re D (2007) Nature of Reed-Sternberg and L&H cells, and their molecular biology in Hodgkin lymphoma. In: RT Hoppe, JO Armitage, V Diehl, PM Mauch, LM Weiss, (eds): Hodgkin lymphoma. Lippincott Williams & Wilkins, Philadelphia, 73–86

    Google Scholar 

  45. Lawrie CH (2007) MicroRNAs and haematology: small molecules, big function. Br J Haematol 137: 503–512

    Article  PubMed  CAS  Google Scholar 

  46. Rosenwald A, Wright G, Leroy K, Yu X, Gaulard P, Gascoyne RD, Chan WC, Zhao T, Haioun C, Greiner TC et al (2003) Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 198: 851–862

    Article  PubMed  CAS  Google Scholar 

  47. Savage KJ, Monti S, Kutok JL, Cattoretti G, Neuberg D, De Leval L, Kurtin P, Dal Cin P, Ladd C, Feuerhake F et al (2003) The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood 102: 3871–3879

    Article  PubMed  CAS  Google Scholar 

  48. Klein U, Gloghini A, Gaidano G, Chadburn A, Cesarman E, Dalla-Favera R, Carbone A (2003) Gene expression profile analysis of AIDS-related primary effusion lymphoma (PEL) suggests a plasmablastic derivation and identifies PEL-specific transcripts. Blood 101:4115–4121

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Tiacci, E., Brune, V., Küppers, R. (2008). Aspects of gene expression in B cell lymphomas. In: Bosio, A., Gerstmayer, B. (eds) Microarrays in Inflammation. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8334-3_12

Download citation

Publish with us

Policies and ethics