Skip to main content

Advertisement

Log in

Global gene expression profiling of formalin-fixed paraffin-embedded tumor samples: a comparison to snap-frozen material using oligonucleotide microarrays

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Oligonucleotide microarrays are widely used to investigate gene expression in a large-scale approach. A major limitation is the dependency on frozen material to obtain high-quality ribonucleic acid because most clinical specimens are formalin-fixed and paraffin-embedded (FFPE). The ability to analyze these samples using microarrays would enlarge the investigable sample stocks manifold. We conducted a comparison of snap-frozen and FFPE tissues investigating two malignomas. Gene expression profiles were obtained from both materials of the tumors. Independently processed triplicates of snap-frozen and FFPE specimen, respectively, were two-round-amplified and hybridized on Affymetrix GeneChips® (Palo Alto, CA, USA). Differentially expressed genes were identified in both FFPE and frozen material. All replicates had a correlation coefficient (R) of greater than 0.95 after normalization. Only direct comparison of FFPE to frozen replicates resulted in a mean R of 0.86, rendering a “mixed” investigation unfeasible. More than 50% (419 genes) of the more than fivefold differentially expressed genes (800 in FFPE, 685 in frozen material) were detected concomitantly regardless of the material used, which is similar to other comparisons of different gene expression analysis platforms. Thus, global gene expression analyses using solely FFPE material seem to be feasible with nearly comparable results to frozen tissue studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abrahamsen HN, Steiniche T, Nexo E, Hamilton-Dutoit SJ, Sorensen BS (2003) Towards quantitative mRNA analysis in paraffin-embedded tissues using real-time reverse transcriptase-polymerase chain reaction: a methodological study on lymph nodes from melanoma patients. J Mol Diagn 5:34–41

    PubMed  CAS  Google Scholar 

  2. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J Jr, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511

    Article  PubMed  CAS  Google Scholar 

  3. Antonov J, Goldstein DR, Oberli A, Baltzer A, Pirotta M, Fleischmann A, Altermatt HJ, Jaggi R (2005) Reliable gene expression measurements from degraded RNA by quantitative real-time PCR depend on short amplicons and a proper normalization. Lab Invest 85:1040–1050

    Article  PubMed  CAS  Google Scholar 

  4. Cronin M, Pho M, Dutta D, Stephans JC, Shak S, Kiefer MC, Esteban JM, Baker JB (2004) Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay. Am J Pathol 164:35–42

    PubMed  CAS  Google Scholar 

  5. Godfrey TE, Kim SH, Chavira M, Ruff DW, Warren RS, Gray JW, Jensen RH (2000) Quantitative mRNA expression analysis from formalin-fixed, paraffin-embedded tissues using 5′ nuclease quantitative reverse transcription-polymerase chain reaction. J Mol Diagn 2:84–91

    PubMed  CAS  Google Scholar 

  6. Hardiman G (2004) Microarray platforms—comparisons and contrasts. Pharmacogenomics 5:487–502

    Article  PubMed  CAS  Google Scholar 

  7. Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. Stat Med 9:811–818

    Article  PubMed  CAS  Google Scholar 

  8. Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(Suppl 1):96–104

    Google Scholar 

  9. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  10. Kenzelmann M, Klaren R, Hergenhahn M, Bonrouhi M, Grone HJ, Schmid W, Schutz G (2004) High-accuracy amplification of nanogram total RNA amounts for gene profiling. Genomics 83:550–558

    Article  PubMed  CAS  Google Scholar 

  11. Kuppers R, Klein U, Schwering I, Distler V, Brauninger A, Cattoretti G, Tu Y, Stolovitzky GA, Califano A, Hansmann ML, Dalla-Favera R (2003) Identification of Hodgkin and Reed–Sternberg cell-specific genes by gene expression profiling. J Clin Invest 111:529–537

    Article  PubMed  CAS  Google Scholar 

  12. Ma XJ, Patel R, Wang X, Salunga R, Murage J, Desai R, Tuggle JT, Wang W, Chu S, Stecker K, Raja R, Robin H, Moore M, Baunoch D, Sgroi D, Erlander M (2006) Molecular classification of human cancers using a 92-gene real-time quantitative polymerase chain reaction assay. Arch Pathol Lab Med 130:465–473

    PubMed  CAS  Google Scholar 

  13. Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A, Muir B, Mohapatra G, Salunga R, Tuggle JT, Tran Y, Tran D, Tassin A, Amon P, Wang W, Wang W, Enright E, Stecker K, Estepa-Sabal E, Smith B, Younger J, Balis U, Michaelson J, Bhan A, Habin K, Baer TM, Brugge J, Haber DA, Erlander MG, Sgroi DC (2004) A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5:607–616

    Article  PubMed  CAS  Google Scholar 

  14. Masuda N, Ohnishi T, Kawamoto S, Monden M, Okubo K (1999) Analysis of chemical modification of RNA from formalin-fixed samples and optimization of molecular biology applications for such samples. Nucleic Acids Res 27:4436–4443

    Article  PubMed  CAS  Google Scholar 

  15. Monti S, Savage KJ, Kutok JL, Feuerhake F, Kurtin P, Mihm M, Wu B, Pasqualucci L, Neuberg D, Aguiar RC, Dal Cin P, Ladd C, Pinkus GS, Salles G, Harris NL, Dalla-Favera R, Habermann TM, Aster JC, Golub TR, Shipp MA (2005) Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 105:1851–1861

    Article  PubMed  CAS  Google Scholar 

  16. Paik S, Kim CY, Song YK, Kim WS (2005) Technology insight: application of molecular techniques to formalin-fixed paraffin-embedded tissues from breast cancer. Nat Clin Pract Oncol 2:246–254

    Article  PubMed  CAS  Google Scholar 

  17. Reichmuth C, Markus MA, Hillemanns M, Atkinson MJ, Unni KK, Saretzki G, Hofler H (1996) The diagnostic potential of the chromosome translocation t(2;13) in rhabdomyosarcoma: a PCR study of fresh-frozen and paraffin-embedded tumour samples. J Pathol 180:50–57

    Article  PubMed  CAS  Google Scholar 

  18. Robison JE, Perreard L, Bernard PS (2004) State of the science: molecular classifications of breast cancer for clinical diagnostics. Clin Biochem 37:572–578

    Article  PubMed  CAS  Google Scholar 

  19. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, Gascoyne RD, Muller-Hermelink HK, Smeland EB, Giltnane JM, Hurt EM, Zhao H, Averett L, Yang L, Wilson WH, Jaffe ES, Simon R, Klausner RD, Powell J, Duffey PL, Longo DL, Greiner TC, Weisenburger DD, Sanger WG, Dave BJ, Lynch JC, Vose J, Armitage JO, Montserrat E, Lopez-Guillermo A, Grogan TM, Miller TP, LeBlanc M, Ott G, Kvaloy S, Delabie J, Holte H, Krajci P, Stokke T, Staudt LM (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346:1937–1947

    Article  PubMed  Google Scholar 

  20. Schlingemann J, Habtemichael N, Ittrich C, Toedt G, Kramer H, Hambek M, Knecht R, Lichter P, Stauber R, Hahn M (2005) Patient-based cross-platform comparison of oligonucleotide microarray expression profiles. Lab Invest 85:1024–1039

    Article  PubMed  CAS  Google Scholar 

  21. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3

    Article  PubMed  Google Scholar 

  22. Schwering I, Brauninger A, Distler V, Jesdinsky J, Diehl V, Hansmann ML, Rajewsky K, Kuppers R (2003) Profiling of Hodgkin’s lymphoma cell line L1236 and germinal center B cells: identification of Hodgkin’s lymphoma-specific genes. Mol Med 9:85–95

    PubMed  CAS  Google Scholar 

  23. Scicchitano MS, Dalmas DA, Bertiaux MA, Anderson SM, Turner LR, Thomas RA, Mirable R, Boyce RW (2006) Preliminary comparison of quantity, quality, and microarray performance of RNA extracted from formalin-fixed paraffin-embedded and unfixed frozen tissue samples. J Histochem Cytochem 54(11):1229–1237

    Article  PubMed  CAS  Google Scholar 

  24. Sheils OM, Sweeney EC (1999) TSH receptor status of thyroid neoplasms—TaqMan RT-PCR analysis of archival material. J Pathol 188:87–92

    Article  PubMed  CAS  Google Scholar 

  25. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M, Reich M, Pinkus GS, Ray TS, Koval MA, Last KW, Norton A, Lister TA, Mesirov J, Neuberg DS, Lander ES, Aster JC, Golub TR (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 8:68–74

    Article  PubMed  CAS  Google Scholar 

  26. Specht K, Richter T, Muller U, Walch A, Werner M, Hofler H (2001) Quantitative gene expression analysis in microdissected archival formalin-fixed and paraffin-embedded tumor tissue. Am J Pathol 158:419–429

    PubMed  CAS  Google Scholar 

  27. Tan PK, Downey TJ, Spitznagel EL Jr, Xu P, Fu D, Dimitrov DS, Lempicki RA, Raaka BM, Cam MC (2003) Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res 31:5676–5684

    Article  PubMed  CAS  Google Scholar 

  28. Tothill RW, Kowalczyk A, Rischin D, Bousioutas A, Haviv I, van Laar RK, Waring PM, Zalcberg J, Ward R, Biankin AV, Sutherland RL, Henshall SM, Fong K, Pollack JR, Bowtell DD, Holloway AJ (2005) An expression-based site of origin diagnostic method designed for clinical application to cancer of unknown origin. Cancer Res 65:4031–4040

    Article  PubMed  CAS  Google Scholar 

  29. Yuen T, Wurmbach E, Pfeffer RL, Ebersole BJ, Sealfon SC (2002) Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. Nucleic Acids Res 30:e48

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Krebshilfe (70-3173-Tr3) and Affymetrix, who provided their GeneChips, and by Dr. Wieland Keilholz. The authors thank Ralf Lieberz for technical assistance, Dr. Birgit Anderegg (formerly of Arcturus) for support on the Paradise Reaction System, and Dr. Klaus Willenbrock for critical reading of the manuscript. The experiments were conducted and the tissues were used and processed in accordance with national ethical principles and comply with the current laws in Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Frank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, M., Döring, C., Metzler, D. et al. Global gene expression profiling of formalin-fixed paraffin-embedded tumor samples: a comparison to snap-frozen material using oligonucleotide microarrays. Virchows Arch 450, 699–711 (2007). https://doi.org/10.1007/s00428-007-0412-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-007-0412-9

Keywords

Navigation