Skip to main content

Targeting the epigenetic modifications of synovial cells

  • Chapter
New Therapeutic Targets in Rheumatoid Arthritis

Part of the book series: Progress in Inflammation Research ((PIR))

  • 801 Accesses

Abstract

Rheumatoid arthritis (RA) is a systemic inflammatory disease that mainly affects the synovial tissues of joints. As in other autoimmune-related disorders, neither the etiology nor the pathogenesis of RA has as yet been completely unraveled. It is generally accepted, however, that autoimmune disorders develop through a combination of the individual genetic susceptibility, environmental factors, and dysregulated immune responses. Genetic predisposition has been described in RA, in particular as “shared epitope”, a distinct sequence of amino acids within the antigen-presenting peptide groove of the major histocompatibility complex. Imbalanced immunity is reflected by the production of autoantibodies and the accumulation of reactive helper T cells within the rheumatoid synovium. In addition, environmental factors have been postulated as disease-modulating agents, including smoking, nutrition and infectious agents. So far, these factors have been studied almost exclusively as separate agents. However, gene transcription might be affected by ageing and environmental effects (such as nutrition and infections) — without changes in the nucleotide sequence of the underlying DNA. These patterns of alterations in the gene expression profiles are called “epigenetics”. The term epigenetics is used to refer to molecular processes that regulate gene expression patterns but without changing the DNA nucleotide sequence. These epigenetic changes comprise the post-synthetic methylation of DNA and post-transcriptional modifications of histones, including methylation, phosphorylation, ubiquitination, sumoylation, biotinlyation and, most importantly, deacetylation and acetylation. With respect to the complex pathogenesis of rheumatic diseases, the “epigenome” is an emerging concept that integrates different etiologies and, thus, offers the opportunity for novel therapeutic strategies. Based on the fact that current therapies have not resulted in an ACR70 above 60% and have never been targeting the activated synovial fibroblast, novel therapeutic strategies should target the epigenetic pathways of synovial activation in RA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 289.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huber LC, Distler O (2006) Rheumatology related genes, Identification. In: D Ganten, K Ruckpaul (eds): Encyclopedic reference of genomics and proteomics in molecular medicine. Springer, Berlin, 1670–1677

    Chapter  Google Scholar 

  2. Southan C (2004) Has the yo-yo stopped? An assessment of human protein-coding gene number. Proteomics 4: 1712–26

    Article  PubMed  CAS  Google Scholar 

  3. Little PF (2005) Structure and function of the human genome. Genome Res 15: 1759–66

    Article  PubMed  CAS  Google Scholar 

  4. Rakyan VK, Hildmann T, Novik KL, Lewin J, Tost J, Cox AV, Andrews TD, Howe KL, Otto T, Olek A et al (2004) DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol 2: e405

    Article  PubMed  Google Scholar 

  5. Whitelaw NC, Whitelaw E (2006) How lifetimes shape epigenotype within and across generations. Hum Mol Genet 15 (Spec No 2): R131–7

    Article  PubMed  CAS  Google Scholar 

  6. Wong AH, Gottesman II, Petronis A (2005) Phenotypic differences in genetically identical organisms: The epigenetic perspective. Hum Mol Genet 14 (Spec No 1): R11–8

    Article  PubMed  CAS  Google Scholar 

  7. Ballestar E, Esteller M, Richardson BC (2006) The epigenetic face of systemic lupus erythematosus. J Immunol 176: 7143–7

    PubMed  CAS  Google Scholar 

  8. Klose RJ, Bird AP (2006) Genomic DNA methylation: The mark and its mediators. Trends Biochem Sci 31: 89–97

    Article  PubMed  CAS  Google Scholar 

  9. Karouzakis E, Neidhart M, Gay RE, Gay S (2006) Molecular and cellular basis of rheumatoid joint destruction. Immunol Lett 106(1): 8–13

    Article  PubMed  CAS  Google Scholar 

  10. Niculescu MD, Zeisel SH (2002) Diet, methyl donors and DNA methylation: Interactions between dietary folate, methionine and choline. J Nutr 132: 2333S–2335S

    PubMed  CAS  Google Scholar 

  11. Poirier LA (2002) The effects of diet, genetics and chemicals on toxicity and aberrant DNA methylation: An introduction. J Nutr 132: 2336S–2339S

    PubMed  CAS  Google Scholar 

  12. Zhu WG, Lakshmanan RR, Beal MD, Otterson GA (2001) DNA methyltransferase inhibition enhances apoptosis induced by histone deacetylase inhibitors. Cancer Res 61: 1327–33

    PubMed  CAS  Google Scholar 

  13. Januchowski R, Dabrowski M, Ofori H, Jagodzinski PP (2007) Trichostatin A down-regulate DNA methyltransferase 1 in Jurkat T cells. Cancer Lett 246: 313–7

    Article  PubMed  CAS  Google Scholar 

  14. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem J 370: 737–49

    Article  PubMed  Google Scholar 

  15. Adcock IM, Ford P, Barnes PJ, Ito K (2006) Epigenetics and airways disease. Respir Res 7: 1–21

    Article  Google Scholar 

  16. Verdin E, Dequiedt F, Kasler HG (2003) Class II histone deacetylases: Versatile regulators. Trends Genet 19: 286–93

    Article  PubMed  CAS  Google Scholar 

  17. Barnes PJ, Adcock IM, Ito K (2005) Histone acetylation and deacetylation: Importance in inflammatory lung diseases. Eur Respir J 25: 552–63

    Article  PubMed  CAS  Google Scholar 

  18. Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363: 15–23

    Article  PubMed  CAS  Google Scholar 

  19. Vigushin DM, Coombes RC (2002) Histone deacetylase inhibitors in cancer treatment. Anticancer Drugs 13: 1–13

    Article  PubMed  CAS  Google Scholar 

  20. Sterner D, Berger S (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64(2): 435–59

    Article  PubMed  CAS  Google Scholar 

  21. Marmorstein R (2001) Structures of histone acetyltransferases. J Mol Biol 311(3): 433–44

    Article  PubMed  CAS  Google Scholar 

  22. Grabiec AM, Tak PP, Reedquist KA (2008) Targeting histone deacetylase activity in rheumatoid arthritis and asthma as prototypes of inflammatory disease: should we keep our HATs on? Arthritis Res Ther 10(5): 226

    Article  PubMed  Google Scholar 

  23. Zhang Y, Fatima N, Dufau ML (2005) Coordinated changes in DNA methylation and histone modifications regulate silencing/derepression of luteinizing hormone receptor gene transcription. Mol Cell Biol 25: 7929–39

    Article  PubMed  CAS  Google Scholar 

  24. Kishikawa S, Ugai H, Murata T, Yokoyama KK (2002) Roles of histone acetylation in the Dnmt1 gene expression. Nucleic Acids Res (Suppl) 209–10

    Google Scholar 

  25. Januchowski R, Dabrowski M, Ofori H, Jagodzinski PP (2007) Trichostatin A down-regulate DNA methyltransferase 1 in Jurkat T cells. Cancer Lett 246: 313–7

    Article  PubMed  CAS  Google Scholar 

  26. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl): 245–54

    Article  PubMed  CAS  Google Scholar 

  27. Huber LC, Gay RE, Gay S (2006) Synovial activation. In: A Falus (ed): Immunogenomics and Human Disease. Wiley, New York, 299–325

    Google Scholar 

  28. Ermann J, Fathman CG (2001) Autoimmune diseases: Genes, bugs and failed regulation. Nat Immunol 2: 759–61

    Article  PubMed  CAS  Google Scholar 

  29. Smith JB, Haynes MK (2002) Rheumatoid arthritis — A molecular understanding. Ann Intern Med 136: 908–22

    PubMed  Google Scholar 

  30. Kim YI, Logan JW, Mason JB, Roubenoff R (1996) DNA hypomethylation in inflammatory arthritis: Reversal with methotrexate. J Lab Clin Med 128: 165–72

    Article  PubMed  CAS  Google Scholar 

  31. Kroger H, Dietrich A, Gratz R, Wild A, Ehrlich W (1999) The effect of tryptophan plus methionine, 5-azacytidine, and methotrexate on adjuvant arthritis of rat. Gen Pharmacol 33: 195–201

    Article  PubMed  CAS  Google Scholar 

  32. Waterland RA (2006) Assessing the effects of high methionine intake on DNA methylation. J Nutr 136: 1706S–1710S

    PubMed  CAS  Google Scholar 

  33. Schwab J, Illges H (2001) Silencing of CD21 expression in synovial lymphocytes is independent of methylation of the CD21 promoter CpG island. Rheumatol Int 20: 133–7

    Article  PubMed  CAS  Google Scholar 

  34. Muller-Ladner U, Kriegsmann J, Franklin BN, Matsumoto S, Geiler T, Gay RE, Gay S (1996) Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am J Pathol 149: 1607–15

    PubMed  CAS  Google Scholar 

  35. Neidhart M, Rethage J, Kuchen S, Kunzler P, Crowl RM, Billingham ME, Gay RE, Gay S (2000) Retrotransposable L1 elements expressed in rheumatoid arthritis synovial tissue: Association with genomic DNA hypomethylation and influence on gene expression. Arthritis Rheum 43: 2634–47

    Article  PubMed  CAS  Google Scholar 

  36. Kuchen S, Seemayer CA, Rethage J, von Knoch R, Kuenzler P, Beat AM, Gay RE, Gay S, Neidhart M (2004) The L1 retroelement-related p40 protein induces p38delta MAP kinase. Autoimmunity 37: 57–65

    Article  PubMed  CAS  Google Scholar 

  37. Ito K, Ito M, Elliott WM, Cosio B, Caramori G, Kon OM, Barczyk A, Hayashi S, Adcock IM, Hogg JC, Barnes PJ (2005) Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med 352: 1967–76

    Article  PubMed  CAS  Google Scholar 

  38. Huber LC, Brock M, Hemmatazad H, Giger OT, Moritz F, Trenkmann M, Distler JH, Gay RE, Kolling C, Moch H et al (2007) Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients. Arthritis Rheum 56: 1087–93

    Article  PubMed  CAS  Google Scholar 

  39. Chung YL, Lee MY, Wang AJ, Yao LF (2003) A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol Ther 8: 707–17

    Article  PubMed  CAS  Google Scholar 

  40. Blanchard F, Chipoy C (2005) Histone deacetylase inhibitors: New drugs for the treatment of inflammatory diseases? Drug Discov Today 10: 197–204

    Article  PubMed  CAS  Google Scholar 

  41. Ito K, Yamamura S, Essilfie-Quaye S, Cosio B, Ito M, Barnes PJ, Adcock IM (2006) Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression. J Exp Med 203: 7–13

    Article  PubMed  CAS  Google Scholar 

  42. Jungel A, Baresova V, Ospelt C, Simmen BR, Michel BA, Gay RE, Gay S, Seemayer CA, Neidhart M (2006) Trichostatin A sensitises rheumatoid arthritis synovial fibroblasts for TRAIL-induced apoptosis. Ann Rheum Dis 65: 910–2

    Article  PubMed  CAS  Google Scholar 

  43. Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, Schlawe K, Chang HD, Bopp T, Schmitt E, Klein-Hessling S, Serfling E, Hamann A, Huehn J (2007) Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol 5: e38

    Article  PubMed  Google Scholar 

  44. Huber LC, Distler O, Tarner I, Gay RE, Gay S, Pap T (2006) Synovial fibroblasts: Key players in rheumatoid arthritis. Rheumatology (Oxford) 45: 669–75

    Article  CAS  Google Scholar 

  45. Lu Q, Qiu X, Hu N, Wen H, Su Y, Richardson BC (2006) Epigenetics, disease, and therapeutic interventions. Ageing Res Rev 5: 449–67

    Article  PubMed  CAS  Google Scholar 

  46. Ou JN, Torrisani J, Unterberger A, Provencal N, Shikimi K, Karimi M, Ekstrom TJ, Szyf M (2007) Histone deacetylase inhibitor Trichostatin A induces global and gene-specific DNA demethylation in human cancer cell lines. Biochem Pharmacol 73: 1297–307

    Article  PubMed  CAS  Google Scholar 

  47. Myzak MC, Ho E, Dashwood RH (2006) Dietary agents as histone deacetylase inhibitors. Mol Carcinog 45: 443–6

    Article  PubMed  CAS  Google Scholar 

  48. Dashwood RH, Myzak MC, Ho E (2006) Dietary HDAC inhibitors: Time to rethink weak ligands in cancer chemoprevention? Carcinogenesis 27: 344–9

    Article  PubMed  CAS  Google Scholar 

  49. Feil R (2006) Environmental and nutritional effects on the epigenetic regulation of genes. Mutat Res 600: 46–57

    PubMed  CAS  Google Scholar 

  50. Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70: 81–120

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Huber, L.C., Jüngel, A., Gay, S. (2009). Targeting the epigenetic modifications of synovial cells. In: Tak, PP. (eds) New Therapeutic Targets in Rheumatoid Arthritis. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8238-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7643-8238-4_11

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-8237-7

  • Online ISBN: 978-3-7643-8238-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics