Skip to main content

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

Abstract

The name of the Monte Carlo method is inspired by the gambling casinos at the city of Monte Carlo in Monaco. The mathematical techniques used by this method are in fact based on the selection of random numbers [1–4]. In its present form, the method is attributed to Fermi, Von Neumann, and Ulam, who developed it for the solution of problems related to neutron transport during the secret research at Los Alamos for the construction of the atomic bomb during world war II. There are, however, indications of previous uses of methods based on selections of random numbers. In particular the name of Lord Kelvin is mentioned for a paper of 1901 [5], and Gosset (better known with the pseudonym Student) used experimental sampling to support his well known theoretical studies of statistical distributions. Fermi himself used already Monte Carlo techniques in the 30′s in connection with neutron transport [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hammersley, J. M., Handscomb, D. C.: Monte Carlo Methods. London: Methuen. 1964

    MATH  Google Scholar 

  2. Shreider, Yu. A. (ed.): The Monte Carlo Method. Oxford: Pergamon. 1966.

    MATH  Google Scholar 

  3. Rubinstein, R. Y.: Simulation and the Monte Carlo Method. New York: Wiley. 1981.

    Book  MATH  Google Scholar 

  4. Spanier, J., Gelbard, M.: Monte Carlo Principles and Neutron Transport Problems. Reading, Mass.: Addison-Wesley. 1969.

    MATH  Google Scholar 

  5. Lord Kelvin: Phil. Mag. (6) 2, 1 (1901).

    Google Scholar 

  6. Anderson, H. L.: J. Stat. Phys. 43, 731 (1986).

    Article  Google Scholar 

  7. Kurosawa, T.: Proa, 8th Int. Conf. Phys. Semic., Kyoto. J. Phys. Soc. Japan, Suppl. 24, 424 (1966).

    Google Scholar 

  8. Lüthi, B, Wyder, P.: Helv. Phys. Acta 33, 667 (1960).

    Google Scholar 

  9. Alberigi-Quaranta, A., Jacoboni, C, Ottaviani, G.: La Rivista del Nuovo Cimento 1, 445 (1971).

    Article  Google Scholar 

  10. Jacoboni, C., Reggiani, L.: Advances in Physics 28, 493 (1979).

    Article  Google Scholar 

  11. Price, P. J.: Semiconductors and Semimetals 14, 249 (1979).

    Article  Google Scholar 

  12. Jacoboni, C, Reggiani, L.: Rev. Mod. Phys. 55, 645 (1983).

    Article  Google Scholar 

  13. Price, P. J.: In: Proa, 9th Int. Conf. Phys. Semic. (Ryukin, S. M., ed.), p. 753. Leningrad: Nauka. 1968.

    Google Scholar 

  14. Rees, H. D.: Phys. Lett. a26, 416, (1968).

    Google Scholar 

  15. Rees, H. D.: J. Phys. Chem. Solids 30, 643 (1969).

    Article  Google Scholar 

  16. Fawcett, W., Hilsum, G, Rees, H. D.: Solid State Commun. 7, 1257 (1969).

    Article  Google Scholar 

  17. Fawcett, W., Boardman, D. A., Swain, S.: J. Phys. Chem. Solids 31, 1963 (1970).

    Article  Google Scholar 

  18. Fawcett, W., Rees, H. D.: Phys. Lett. 11, 731 (1969).

    Google Scholar 

  19. Fawcett, W.: In: Electrons in Crystalline Solids (Salam, A., ed.), p. 531. Vienna: IAEA. 1973.

    Google Scholar 

  20. Lebwohl, P. A., Price, P. J.: Solid State Commun. 9, 1221 (1971)

    Article  Google Scholar 

  21. Lebwohl, P. A., Price, P. J.: Appl. Phys. Lett. 19, 530(1971).

    Article  Google Scholar 

  22. Price, P. J.: IBM J. Res. Dev. 17, 39 (1973).

    Article  Google Scholar 

  23. Bosi, S., Jacoboni, C: J. Phys. C9, 315 (1976).

    Google Scholar 

  24. Lugli, P., Ferry, D. K.: IEEE Trans. Electron Dev. ED-32, 2431 (1985).

    Article  Google Scholar 

  25. Hockney, R. W., Warriner, R. A., Reiser, M.: Electron. Lett. 10, 484 (1974).

    Article  Google Scholar 

  26. Baccarani, G., Jacoboni, C, Mazzone, A. M.: Solid State Electr. 20, 5 (1977).

    Article  Google Scholar 

  27. Lugli, P., Jacoboni, C: In: ESSDERC 87, Proa, 17th European Solid State Device Research Conference (Calzolari, P. U., Soncini, G., eds.), p. 97 and references therein. Bologna: Tecnoprint. 1987.

    Google Scholar 

  28. Sze, S. M.: Physics of Semiconductor Devices, 2nd edn. New York: Wiley. 1982.

    Google Scholar 

  29. Solomon, P.: Proc. IEEE 70, 489 (1982).

    Article  Google Scholar 

  30. IEEE J. Quantum Electronics QE-22, n. 9 (1986), special issue on semiconductor quantum wells and superlattices: physics and applications.

    Google Scholar 

  31. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Wien-New York: Springer. 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag/Wien

About this chapter

Cite this chapter

Jacoboni, C., Lugli, P. (1989). Introduction. In: The Monte Carlo Method for Semiconductor Device Simulation. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6963-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6963-6_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7453-1

  • Online ISBN: 978-3-7091-6963-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics