Skip to main content
Log in

Negative differential mobility in III–V and II–VI semiconducting compounds

  • Published:
La Rivista Del Nuovo Cimento

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

E :

Electric field

E e :

Electric field outside the domain

E i :

Electric field inside the domain

E m :

Electric field for which the drift velocity equals the valley value

E th :

Threshold field for Gunn instabilities

E v :

Valley field, corresponding to the minimum drift velocity

E 0 :

d.c. electric field

E 1 :

Microwave field amplitude

E :

Energy

E g :

Energy gap

f :

Electron distribution function

f i :

Partial electron distribution function, for thei-th valley

f (i) :

Electron distribution function in thei-th valley

g(t):

Probability, per unit time, of a free flight of time durationt

:

Planck’s constant

I(t):

Transient current

j :

Electric-current density

k :

Electron wave vector

k :

Wave vector component perpendicular to the electric field

K (i) :

Electron wave vector measured from the centre of thei-th valley

LSA:

Limited space-charge accumulation mode

m :

Effective electron mass

m 0 :

Free-electron mass

m 1 :

Electron effective mass in the central valley

m 2 :

Electron effective mass in the satellite valleys

n :

Majority-carrier concentration

N :

Number of charges created by radiation inside the sample

NDM:

Negative differential mobility

P :

Scattering probability rate

P j :

Scattering probability rate for thej-th mechanism

P abs :

Absorbed power

q :

Carrier charge

r :

Random number between 0 and 1

R :

Penetration depth of an ionizing radiation

SCLC:

Space-charge limited current

t :

Time

t (i) :

Time measured from the latest scattering event of thei-th electron

t i :

Time duration of thei-th free electron flight

T R :

Transit time through the sample

T R :

Transit time augmented by trapping phenomena

v :

Electron velocity

v (i) :

Velocity of thei-th electron

v d :

Electron drift velocity

v D :

Domain velocity

v (i)0 :

Velocity of thei-th electron at the beginning of the latest free flight

v v :

Valley value of drift velocity

V :

Voltage

V 0 :

Volume

W :

Sample width

Λ :

Maximum collision probability

ΔE :

Energy difference between central and satellite minima

ΔQ :

Charge induced at the contacts

Δx :

Distance travelled by a charge inside the sample

θ :

Angle between electron momentum and electric field

μ :

Carrier mobility

σ :

Electrical low-field conductivity

τ d :

Differential dielectric relaxation time

τ D :

Detrapping time

τ + :

Trapping time, or mean free drift time

τ 0 :

Λ −1

τ E :

Energy relaxation time

ω:

Microwave frequency

ω 0 :

Optical-phonon frequency

References

  1. E. M. Conwell:High-field transport in semiconductors, inSol. State Phys., Suppl., Vol.9 (New York, 1967).

  2. J. Frenkel:Phys. Rev.,54, 647 (1938).

    ADS  Google Scholar 

  3. H. Fröhlich:Proc. Roy. Soc., A188, 521 (1947).

    ADS  Google Scholar 

  4. W. Shockley:Bell Syst. Tech. Journ.,30, 990 (1951).

    Google Scholar 

  5. J. B. Gunn:Sol. State Comm.,1, 88 (1963).

    ADS  Google Scholar 

  6. J. B. Gunn:IBM Journ. Res. Dev.,8, 141 (1964).

    Google Scholar 

  7. N. Braslau, J. B. Gunn andJ. L. Staples:IBM Journ. Res. Dev.,8, 545 (1964).

    Google Scholar 

  8. J. B. Gunn:Internat. Sci. Techn., October 1965, p. 43.

  9. H. Kroemer:Proc. IEEE,52, 1736 (1964).

    Google Scholar 

  10. B. K. Ridley andT. B. Watkins:Proc. Phys. Soc.,78, 293 (1961).

    ADS  Google Scholar 

  11. C. Hilsum:Proc. IRE,50, 185 (1962).

    Google Scholar 

  12. B. K. Ridley:Proc. Phys. Soc.,82, 954 (1963).

    ADS  Google Scholar 

  13. B. K. Ridley:Proc. Phys. Soc.,86, 637 (1965).

    ADS  Google Scholar 

  14. P. N. Butcher:Phys. Lett.,19, 546 (1965).

    MathSciNet  ADS  Google Scholar 

  15. J. A. Copeland:Journ. Appl. Phys.,37, 3602 (1966).

    ADS  Google Scholar 

  16. J. B. Gunn:IBM Journ. Res. Dev.,10, 300 (1966).

    Google Scholar 

  17. H. Kroemer:IEEE Trans. Elect. Dev., ED13, 27 (1966).

    ADS  Google Scholar 

  18. P. N. Butcher, W. Fawcett andC. Hilsum:Brit. Journ. Appl. Phys.,17, 841 (1966).

    ADS  Google Scholar 

  19. P. N. Butcher andW. Fawcett:Brit. Journ. Appl. Phys.,17, 1425 (1966).

    ADS  Google Scholar 

  20. D. E. McCumber andA. G. Chynoweth:IEEE Trans. Elect. Dev., ED13, 4 (1966).

    ADS  Google Scholar 

  21. P. N. Butcher, W. Fawcett andN. R. Ogg:Brit. Journ. Appl. Phys.,18, 755 (1967).

    ADS  Google Scholar 

  22. W. Heinle:Brit. Journ. Appl. Phys.,18, 1537 (1967).

    ADS  Google Scholar 

  23. P. N. Butcher:Rep. Prog. Phys.,30, 97 (1967).

    ADS  Google Scholar 

  24. K. W. Böer andG. A. Dussel:Phys. Rev.,154, 292 (1967).

    ADS  Google Scholar 

  25. K. Kurosawa:Bell Syst. Tech. Journ.,46, 2235 (1967).

    Google Scholar 

  26. B. K. Ridley andP. H. Wisbey:Brit. Journ. Appl. Phys.,18, 761 (1967).

    ADS  Google Scholar 

  27. B. W. Knight andG. A. Peterson:Phys. Rev.,155, 393 (1967).

    ADS  Google Scholar 

  28. M. A. Lampert andR. A. Sunshine:Journ. Appl. Phys.,41, 4676 (1970).

    ADS  Google Scholar 

  29. J. E. Carroll:Hot Electron Microwave Generators (London, 1970).

  30. D. M. Chang andJ. L. Moll:Appl. Phys. Lett.,9, 283 (1966).

    ADS  Google Scholar 

  31. J. B. Gunn andB. J. Elliott:Phys. Lett.,22, 369 (1966).

    ADS  Google Scholar 

  32. C. Hamaguchi, T. Kono andY. Inuishi:Phys. Lett.,24 A, 500 (1967).

    ADS  Google Scholar 

  33. G. A. Acket:Phys. Lett.,24 A, 200 (1967).

    ADS  Google Scholar 

  34. G. A. Acket:Phys. Lett.,25 A, 374 (1967).

    ADS  Google Scholar 

  35. G. A. Acket andJ. de Groot:IEEE Trans. Elect. Dev., ED14, 505 (1967).

    Google Scholar 

  36. J. G. Ruch andG. S. Kino:Appl. Phys. Lett.,10, 40 (1967).

    ADS  Google Scholar 

  37. S. G. Kalashnikov, V. E. Lyubchenko andN. E. Skvortsova:Sov. Phys. Semic.,1, 1206 (1967).

    Google Scholar 

  38. G. A. Acket:Phil. Res. Rept.,22, 541 (1967).

    Google Scholar 

  39. J. G. Ruch andG. S. Kino:Phys. Rev.,174, 921 (1968).

    ADS  Google Scholar 

  40. G. A. Acket:Phil. Res. Rept.,23, 317 (1968).

    Google Scholar 

  41. L. D. Cohen:Proc. IEEE,57, 1299 (1969).

    Google Scholar 

  42. B. Fay andG. S. Kino:Appl. Phys. Lett.,15, 337 (1969).

    ADS  Google Scholar 

  43. N. Braslau andP. S. Hauge:IEEE Trans. Elect. Dev., ED17, 616 (1970).

    Google Scholar 

  44. C. Canali, M. Martini, G. Ottaviani andK. R. Zanio:Phys. Lett.,33 A, 241 (1970).

    ADS  Google Scholar 

  45. A. Neukermans andG. S. Kino:Appl. Phys. Lett.,17, 102 (1970).

    ADS  Google Scholar 

  46. E. M. Bastida, G. Fabri, V. Svelto andF. Vaghi:Appl. Phys. Lett.,18, 28 (1971). See alsoAppl. Phys. Lett.,19, 122 (1971).

    ADS  Google Scholar 

  47. C. Canali, M. Martini, G. Ottaviani andK. R. Zanio:Phys. Rev.,4 B, 422 (1971).

    ADS  Google Scholar 

  48. P. M. Boers:Elect. Lett., to be published.

  49. N. Braslau:Phys. Lett.,24 A, 531 (1967).

    ADS  Google Scholar 

  50. H. W. Thim:Elect. Lett.,2, 403 (1966).

    Google Scholar 

  51. B. W. Hakki andS. Knight:Sol. State Comm.,3, 89 (1965).

    ADS  Google Scholar 

  52. J. S. Heeks, A. D. Woode andC. P. Sandbank:Proc. IEEE,53, 554 (1965).

    Google Scholar 

  53. A. G. Foyt andA. L. McWhorter:IEEE Trans. Elect. Dev., ED13, 79 (1966).

    ADS  Google Scholar 

  54. J. S. Heeks:IEEE Trans. Elect. Dev., ED13, 68 (1966).

    ADS  Google Scholar 

  55. A. R. Hutson, A. Jayaraman, A. G. Chynoweth, A. S. Coriell andW. L. Feldman:Phys. Rev. Lett.,14, 639 (1965).

    ADS  Google Scholar 

  56. H. Kroemer:Proc. IEEE,53, 1246 (1965).

    Google Scholar 

  57. This hypothesis is not always necessarily verified. For example, the band structure obtained with theoretical calculations for CdTe (ref. [137]) has very flat regions rather than definite secondary valleys (see Fig. 23). However, the uncertainty assigned to these theoretical calculations is in general not less than a few tenths of eV.

    ADS  Google Scholar 

  58. W. Fawcett, A. D. Boardman andS. Swain:Journ. Phys. Chem. Sol.,31, 1963 (1970).

    ADS  Google Scholar 

  59. J. M. Hammersley andD. C. Handscomb:Monte Carlo Methods (London, 1964).

  60. T. Kurosawa:Proceedings of the International Conference on the Physics of Semiconductors (Kyoto, 1966);Journ. Phys. Soc. Japan Suppl.,21, 424 (1966).

  61. H. D. Rees:Phys. Lett.,26 A, 416 (1968).

    ADS  Google Scholar 

  62. A. D. Boardman, W. Fawcett andH. Rees:Sol. State Comm.,6, 305 (1968).

    ADS  Google Scholar 

  63. H. D. Rees:Sol. State Comm.,7, 267 (1969).

    ADS  Google Scholar 

  64. H. D. Rees:Journ. Phys. Chem. Sol.,30, 643 (1969).

    ADS  Google Scholar 

  65. W. Fawcett andH. D. Rees:Phys. Lett.,29 A, 578 (1969).

    ADS  Google Scholar 

  66. W. Fawcett andE. G. S. Paige:Journ. Phys. C,4, 1801 (1971).

    ADS  Google Scholar 

  67. L. Bacchelli andC. Jacoboni:Sol. State Comm.,10, 71 (1972).

    ADS  Google Scholar 

  68. Random numbers between 0 and 1 are nowadays generated by library routines in all major computers. They are not actually random in the sense that given the first number of the sequence, the whole sequence is completely determined. These numbers are called pseudorandom numbers and they have the advantage of being reproducible (for program debugging and similar purposes). What is important for us is that they behave as random numbers. There is no way to prove rigorously that they do so. What can be done is to submit them to all conceivable randomness tests and to trust them as long as they do not fail. Actually the numbers generated by the routine used in most computers failed one test (ref. [144]), although this failure is of such a nature as to not affect the results of a Monte Carlo calculation of the type described here.

    MathSciNet  ADS  MATH  Google Scholar 

  69. M. A. Omar:Phys. Rev.,171, 925 (1968).

    ADS  Google Scholar 

  70. D. Mukhopadhyay andB. R. Nag:Phys. Lett.,29 A, 648 (1969).

    ADS  Google Scholar 

  71. R. K. Kar andM. N. Mukherjee:Phys. Lett.,30 A, 355 (1969).

    ADS  Google Scholar 

  72. M. A. Omar:Phys. Rev.,186, 791 (1969).

    ADS  Google Scholar 

  73. H. Heinrich:Phys. Rev. B,3, 416 (1971).

    ADS  Google Scholar 

  74. K. Seeger:Phys. Rev.,114, 476 (1959).

    ADS  Google Scholar 

  75. J. Zucker, V. J. Fowler andE. M. Conwell:Journ. Appl. Phys.,32, 2606 (1961).

    ADS  Google Scholar 

  76. A. F. Gibson, J. W. Granville andE. G. S. Paige:Journ. Phys. Chem. Sol.,19, 198 (1961).

    ADS  Google Scholar 

  77. M. A. C. S. Brown:Journ. Phys. Chem. Sol.,19, 218 (1961).

    ADS  Google Scholar 

  78. C. Hamaguchi andY. Inuishi:Journ. Phys. Chem. Sol.,27, 1511 (1966).

    ADS  Google Scholar 

  79. W. E. Spear:Proc. Phys. Soc.,78, 826 (1960).

    ADS  Google Scholar 

  80. W. E. Spear:Journ. Phys. Chem. Sol.,21, 110 (1961).

    ADS  Google Scholar 

  81. A. Alberigi Quaranta, F. Cipolla andM. Martini:Phys. Lett.,17, 102 (1965).

    ADS  Google Scholar 

  82. J. W. Mayer: inSemiconductor Radiation Detector, edited byG. Bertolini andA. Coche, Chap. 5 (Amsterdam, 1968).

  83. W. E. Spear:Journ. Noncryst. Sol.,1, 197 (1969).

    ADS  Google Scholar 

  84. R. G. Kepler:Phys. Rev.,119, 1226 (1960).

    ADS  Google Scholar 

  85. M. Martini, J. W. Mayer andK. R. Zanio: to be published inAppl. Sol. State Sci.

  86. J. L. Su, Y. Nishi, J. L. Moll andA. Neukermans:Sol. State Elect.,13, 1115 (1970).

    ADS  Google Scholar 

  87. C. B. Norris andJ. F. Gibbons:IEEE Trans. Elect. Dev., ED14, 30 (1967).

    Google Scholar 

  88. C. Canali, G. Ottaviani andA. Alberigi Quaranta:Journ. Phys. Chem. Sol.,32, 1707 (1971).

    ADS  Google Scholar 

  89. O. Meyer andH. J. Longman:Nucl. Instr. Meth.,34, 77 (1965).

    Google Scholar 

  90. D. M. Chang andJ. G. Ruch:Appl. Phys. Lett.,12, 111 (1968).

    ADS  Google Scholar 

  91. A. Neukermans andG. S. Kino:Sol. State Comm.,8, 987 (1970).

    ADS  Google Scholar 

  92. C. Canali, M. Martini, G. Ottaviani andK. R. Zanio:Sol. State Comm.,9, 163 (1971).

    ADS  Google Scholar 

  93. R. Van Heyningen:Phys. Rev.,128, 2112 (1962).

    ADS  Google Scholar 

  94. C. Cavalleri, G. Fabri, E. Gatti andV. Svelto:Nucl. Instr. Meth.,21, 177 (1963).

    Google Scholar 

  95. M. Martini andT. A. McMath:Appl. Phys. Lett.,14, 374 (1969).

    ADS  Google Scholar 

  96. A. Alberigi Quaranta, C. Canali andG. Ottaviani:Rev. Sci. Instr.,41, 1205 (1970).

    ADS  Google Scholar 

  97. G. Ottaviani, C. Canali, C. Jacoboni, A. Alberigi Quaranta andK. R. Zanio: to be published.

  98. NDM has been seen also in Ge (ref. [95]). In the band structure of this material there are four equivalent valleys along the [111] directions, at the zone edge, and higher valleys in the centre of the zone and along the [100] directions. The equivalence of the lowest valleys can be removed by applying uniaxial pressure along particular directions. In this case a band structure analogous to that of cubic compound semiconductors, which gives rise to NDM, is obtained. Even in the absence of pressure the equivalence of the band minima can be destroyed by an applied electric field. In fact, at high values of this field the distribution functions of the electrons in the different valleys are different, corresponding to different heating, that is, different mean electron energies. This fact, combined with the effect of intervalley scattering, can originate an NDM. A more detailed treatment of this problem is beyond the aims of the present paper. We refer the interested reader to ref. [145].

    ADS  Google Scholar 

  99. J. G. Ruch andW. Fawcett:Journ. Appl. Phys.,41, 3843 (1970).

    ADS  Google Scholar 

  100. P. N. Butcher andW. Fawcett:Phys. Lett.,17, 216 (1965).

    ADS  Google Scholar 

  101. P. N. Butcher andW. Fawcett:Proc. Phys. Soc.,86, 1205 (1965).

    ADS  Google Scholar 

  102. P. N. Butcher andW. Fawcett:Phys. Lett.,21, 489 (1966).

    ADS  Google Scholar 

  103. E. M. Conwell andM. O. Vassel:Phys. Lett.,25 A, 302 (1967).

    ADS  Google Scholar 

  104. E. M. Conwell andM. O. Vassel:Phys. Rev.,166, 797 (1968).

    ADS  Google Scholar 

  105. W. Fawcett andH. D. Rees:Phys. Lett.,28 A, 731 (1969).

    ADS  Google Scholar 

  106. B. J. Elliott: quoted byW. Fawcett, A. D. Boardman andS. Swain:Journ. Phys. Chem. Sol.,31, 1963 (1970).

    Google Scholar 

  107. G. A. Acket:Phys. Lett.,29 A, 596 (1969).

    ADS  Google Scholar 

  108. G. H. Glover:Appl. Phys. Lett.,17, 472 (1970).

    ADS  Google Scholar 

  109. P. N. Butcher, W. Fawcett andC. Hilsum:IEEE Trans. Elect. Dev., ED13, 192 (1966).

    ADS  Google Scholar 

  110. M. P. Wasse, J. Lees andG. King:Sol. State Elect.,9, 601 (1966).

    ADS  Google Scholar 

  111. J. S. Harris, J. L. Moll andG. L. Pearson:Phys. Rev. B,1, 1660 (1970).

    ADS  Google Scholar 

  112. J. W. Allen, M. Shyam, Y. S. Chen andG. L. Pearson:Appl. Phys. Lett.,7, 78 (1965).

    ADS  Google Scholar 

  113. F. P. Califano:Alta Frequenza,38, 937 (1969).

    Google Scholar 

  114. G. W. Ludwig, R. E. Halsted andM. Even:IEEE Trans. Elect. Dev., ED13, 671 (1966).

    ADS  Google Scholar 

  115. G. W. Ludwig:IEEE Trans. Elect. Dev., ED14, 547 (1967).

    Google Scholar 

  116. M. R. Oliver andA. G. Foyt:IEEE Trans. Elect. Dev., ED14, 617 (1967).

    Google Scholar 

  117. C. Jacoboni andL. Reggiani:Phys. Lett.,33 A, 333 (1970).

    ADS  Google Scholar 

  118. S. Porowski, W. Paul, J. C. McGroddy, M. I. Natan andJ. E. Smith jr.:Sol. State Comm.,7, 905 (1969).

    ADS  Google Scholar 

  119. J. E. Smith jr.,M. I. Nathan andJ. C. McGroddy:Appl. Phys. Lett.,15, 242 (1969).

    ADS  Google Scholar 

  120. J. C. McGroddy, M. R. Lorenz andT. S. Plaskett:Sol. State Comm.,7, 901 (1969).

    ADS  Google Scholar 

  121. G. Persky andD. J. Bartelink:IBM Journ. Res. Dev.,13, 607 (1969).

    Google Scholar 

  122. C. Hammar andP. Weissglas:Phys. Stat. Sol.,24, 531 (1967).

    ADS  Google Scholar 

  123. D. Matz:Phys. Rev.,168, 843 (1968).

    ADS  Google Scholar 

  124. W. Fawcett andJ. G. Ruch:Appl. Phys. Lett.,15, 368 (1969).

    ADS  Google Scholar 

  125. C. Hilsum andH. D. Rees:Elect. Lett.,6, 277 (1970).

    Google Scholar 

  126. J. A. Copeland:Proc. IEEE,54, 1479 (1966).

    Google Scholar 

  127. J. A. Copeland:Journ. Appl. Phys.,38, 3096 (1967).

    ADS  Google Scholar 

  128. C. Hilsum, J. B. Mullin, B. A. Prew, H. D. Rees andB. W. Straughan:Elect. Lett.,6, 307 (1970).

    Google Scholar 

  129. D. Colliver, C. Hilsum, B. D. Joyce, J. R. Morgan andH. D. Rees:Elect. Lett.,6, 436 (1970).

    Google Scholar 

  130. C. Hilsum: private communication.

  131. P. M. Boers, G. A. Acket, D. H. Paxman andR. J. Tree:Elect. Lett.,7, 1 (1971).

    Google Scholar 

  132. P. M. Boers:Phys. Lett.,34 A, 329 (1971).

    ADS  Google Scholar 

  133. L. W. James, J. P. Van Dyke, F. Herman andD. M. Chang:Phys. Rev. B,1, 3998 (1970).

    ADS  Google Scholar 

  134. P. M. Boers: private communication.

  135. G. W. Ludwig andM. Aven:Journ. Appl. Phys.,38, 5326 (1967).

    ADS  Google Scholar 

  136. M. L. Cohen andT. K. Bergstresser:Phys. Rev.,141, 789 (1966).

    ADS  Google Scholar 

  137. J. W. Allen, M. Shyam andG. L. Pearson:Appl. Phys. Lett.,9, 39 (1966).

    ADS  Google Scholar 

  138. J. E. Smith jr. andD. L. Camphausen:Journ. Appl. Phys.,42, 2064 (1971).

    ADS  Google Scholar 

  139. W. Fawcett, C. Hilsum andH. D. Rees:Sol. State Comm.,7, 1257 (1969).

    ADS  Google Scholar 

  140. H. Heinrich andW. Jantsch:Phys. Stat. Sol.,38, 225 (1970).

    ADS  Google Scholar 

  141. H. Hillbrand:Phys. Stat. Sol.,5, K 113 (1971).

    ADS  Google Scholar 

  142. C. D. Zerby:Meth. Computat. Phys.,1, 89 (1963).

    Google Scholar 

  143. J. Marsaglia:Proc. Nat. Acad. Sci.,61, 25 (1968).

    MathSciNet  ADS  MATH  Google Scholar 

  144. W. Fawcett andE. G. S. Paige:Journ. Phys. C,4, 1801 (1971).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quaranta, A.A., Jacoboni, C. & Ottaviani, G. Negative differential mobility in III–V and II–VI semiconducting compounds. Riv. Nuovo Cim. 1, 445–495 (1971). https://doi.org/10.1007/BF02747246

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02747246

Navigation