Skip to main content

The role of glycine in pain and spasticity

  • Chapter
Spinal Cord Monitoring

Abstract

Neuropathic pain is an intense pain perceived without an obvious noxious stimulus. Spasticity is heightened stretch reflexes and excessive muscle tonus. Both are a common and severely debilitating sequela to injury of the nervous system and both conditions frequently occur together simultaneously. In order to support this glycine-based theory we tested the primary hypothesis with the assumption that a relationship exists between segmentai glycine levels and neuropathic pain and spasticity. These tests included: 1) the detection of segmentai glycine release after motor and sensory pathway stimulation in normal injured animals, 2) the reduction of pain and spasticity following administration of glycine, and its receptor agonists, and 3) the production of pain and spasticity following administration of glycine receptor antagonists. Once fulfilled, results from these experiments would support the goal directed toward enhancing glycine receptor mechanisms as treatment for neuropathic pain and spasticity. Two animal models were employed to test the hypothesis, 1) a classic model of neuropathic pain in the rat created by sciatic nerve constriction, and 2) an established model of spasticity in the rabbit created by spinal cord ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albright AL, Cervi A. Singletary J (1991) Intrathecal baclofen for spasticity in cerebral palsy. JAMA 265: 1418–1422

    Article  PubMed  CAS  Google Scholar 

  • Amassian VE, Stewart BS, Quirk GJ, Rosenthal JL (1987) Physiological basis of motor effects of a transient stimulation to cerebral cortex. Neurosurgery 20: 74–93

    PubMed  CAS  Google Scholar 

  • Aprison MH, Shank RP, Davidoff RA (1969) A comparison of the concentration of glycine, a transmitter suspect, in different areas of the brain and spinal cord in seven different vertebrates. Comp Biochem Physiol 28: 1345–1355

    Article  PubMed  CAS  Google Scholar 

  • Aprison MH (1990) The discovery of the Neurotransmitter role of glycine. In: Ottersen OP, Storm-Mathisen J (eds) Glycine Neurotransmission. Wiley, New York, pp 1–23

    Google Scholar 

  • Araki T, Yamano M, Murakami T, Wanaka A, Betz H, Tohyama M (1988) Localization of glycine receptors in the rat central nervous system: An immunocytochemical analysis using monclonal antibody. Neuroscience 25: 613–624

    Article  PubMed  CAS  Google Scholar 

  • Ashby P, Verrier M, Lightfoot E (1974) Segmentai reflex pathways in spinal shock and spinal spasticity in man. J Neurol Neurosurg Psychiatry 37: 1352–1360

    Article  PubMed  CAS  Google Scholar 

  • Ashby P, McCrea DA (1987) Neurophysiology of spasticity. In: Davidoff RA (ed) Handbook of the Spinal Cord. Marcel Dekker, New York, pp 119–143

    Google Scholar 

  • Attal N, Jazat F, Kayser V, Guilbaud G (1990) Further evidence for pain related behaviours in a model of unilateral peripheral mononeuropathy. Pain 41: 235–251

    Article  PubMed  CAS  Google Scholar 

  • Barbeau A (1974) Preliminary study of glycine administration in patients with spasticity. Neurology 24: 392

    Google Scholar 

  • Barolat-Romana G, Davis R (1980) Neurophysicological mechanisms in abnormal reflex activities in cerebral palsy and spinal spasticity. J Neurol Neurosurg Psychiatry 43: 333–342

    Article  PubMed  CAS  Google Scholar 

  • Barolat G, Schwartzman RJ, Woo R (1989) Epidural spinal cord stimulation in the management of reflex syumpathetic dystrophy. Sterotac Funct Neurosurg 53: 29–39

    Article  CAS  Google Scholar 

  • Basbaum AI (1988) Distribution of glycine receptor immunoreactivity in the spinal cord of the rat: Cytochemical evidence for a differential glycinergic control of lamina I and V nociceptive neurons. J Comp Neurol 278: 330–336

    Article  PubMed  CAS  Google Scholar 

  • Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33: 87–107

    Article  PubMed  CAS  Google Scholar 

  • Bennett GJ, Kajander KC, Sahara Y (1989) Neurochemical and anatomical changes in the dorsal horn of rats with an experimental painful peripheral neuropathy. In: Cervero F, Bennett GJ, Headley PM (eds) The Superficial Dorsal Horn of the Spinal Cord. Plenum, New York, pp 463–471

    Google Scholar 

  • Bennett GJ (1991) Evidence from animai models on the pathogenesis of painful peripheral neuropathy: Relevance for pharmacotherapy. In: Basbaum AI, Beeson JM (eds) Toward a New Pharmacotherapy. Wiley, New York, pp 365–379

    Google Scholar 

  • Benveniste H, Hansen AJ, Ottosen NS (1989) Determination of brain interstitial concentrations by microdialysis. J Neuroehem 52: 1741–1750

    Article  CAS  Google Scholar 

  • Benveniste H (1989) Brain microdialysis: Short review. J Neurochem 52: 1667–1679

    Article  PubMed  CAS  Google Scholar 

  • Berger SJ, Carter JG, Lowry OH (1977) The distribution of glycine, GABA, glutamate, and aspartate in rabbit spinal cord, cerebellum and hippocampus. J Neurochem 28: 149–158

    Article  PubMed  CAS  Google Scholar 

  • Bernhard CG, Koll W (1953) On the effect of strychnine, asphyxia and dial on the spinal cord potentials. Acta Physiol Scand 29 [Suppl] 106: 30–41

    Google Scholar 

  • Beyer C, Banas C, Gomora P, Komisaruk BR (1988) Prevention of the convulsant and hyperalgesic action of strychnine by intrathecal glycine and related amino acids. Pharmacol Biochem Behav 29: 73–78

    Article  PubMed  CAS  Google Scholar 

  • Beyer C, Banas C, Gonzalez-Flores O, Komisaruk BR (1989) Blockage of substance P-induced scratching behavior in rats by the intrathecal adminstration ofinhibitory amino acid agonists. Pharmacol Biochem Behav 34: 491–495

    Article  PubMed  CAS  Google Scholar 

  • Bidlingmeyer BA, Cohen SA, Tarvin TL (1984) Rapid analysis of amino acids using pre-column derivatization. J Chromatogr 336: 93–104

    Article  PubMed  CAS  Google Scholar 

  • Biscoe TJ, Duchen MR (1986) Synaptic physiology of spinal motoneurones of normal and spastic mice: an in vitro study. J Physiol 379: 275–292

    PubMed  CAS  Google Scholar 

  • Boyd SG, Tothwell JC, Cowan MA, Webb PJ, Morley T, Asselman P, Marsden CD (1986) A method of monitoing function in corticospinal pathways during scoliosis surgery with a note on motor conduction velocities, j Neurol Neurosurg Psychiatry 49: 251–257

    Article  PubMed  CAS  Google Scholar 

  • Brooks CM, Eccles JC (1947) A study of the effects of anaesthesia and asphyxia on the mono-synaptic pathway through the spinal cord. J Neurophysiol 10: 349–360

    PubMed  CAS  Google Scholar 

  • Brown AC, Headly PM, West (1975) A device for producing reproducible electronically-timed pinch to provide noxious mechanical input. Proc Royal Soc 2: 123–125

    Google Scholar 

  • Bruggencate GT, Engberg I (1968) Analysis of glycine actions on spinal interneurones by intraceliular recording. Brain Res 11: 446–450

    Article  PubMed  Google Scholar 

  • Brugger F, Wicki U, Elton DN, Fagg GE, Olpe HR, Pozza NM (1992) Modulation of the NMDA receptor by D-serine in the cortex and the spinal cord, in vitro. Europ J Pharmacol 191: 29–

    Article  Google Scholar 

  • Burke D, Ashby P (1972) Are spinal “presynaptic” inhibitory mechanisms supressed in spasticity? J Neurol Sci 15: 321–326

    Article  PubMed  CAS  Google Scholar 

  • Cahusac PMB, Evans RH, Hill RG, Todriquez RE, Smait DAS (1984) The behavioural effects of an N-methylaspartate receptor antagonist following application to the iumbar spinal cord of conscious rats. Neuropharmacology 23: 719–724

    Article  PubMed  CAS  Google Scholar 

  • Campbeli JN, Raja SN, Melyer RA, Mackinnon SE (1988) Myelinated afferents signal the hyperalgesia associated with nerve injury. Pain 32: 89–94

    Article  Google Scholar 

  • Cheng MK, Robertson C, Grossman RG, Foltz Williams V (1984) Neurological outcome correlated with spinal evoked potentials in a spinal cord ischemia model. J Neurosurg 60: 786–795

    Article  PubMed  CAS  Google Scholar 

  • Chizhmakov IV, Kiskin NI, Krishtai OA, Tsyndrenko AY (1989) Glycine action on N-melhy-D-aspartate receptors in rat hippocampal neurons. Neurosci Lett 99: 331–136

    Article  Google Scholar 

  • Chrislensen H, Fykse EM, Fonnum F (1990) Uptake of glycine into synaptic vesicles isolated from rat spinal cord. J Neuroehem 54: 1142–1147

    Article  Google Scholar 

  • Cohen SA, Bidlingrneyer BA, Tarvin TL (1986) PITC derivatives in amino acid analysis. Nature 320: 769–770

    Article  PubMed  CAS  Google Scholar 

  • Curtis DR, Hosli L, Johnston GAR (1968) A pharmacological study of depression of spinal neurones by glycine and related amino acids. Exp Brain Res 6: 1–18

    Article  PubMed  CAS  Google Scholar 

  • Curtis DR, Duggan AW, Johnston GAR (1971) The specificity of strychnine as a glycine antagonist in the mammalian spinal cord. Exp Brain Res 12: 547–565

    Article  PubMed  CAS  Google Scholar 

  • D’Amour F, Smith D (1941) A method for determing loss of pain sensation. J Pharmacol Exp Therap 72: 74–79

    Google Scholar 

  • Daiy EC, Aprison MH (1983) Glycine. In: Lajtha A (ed) Handbook of Neurochemistry. Plenum Press, New York, pp 467–499

    Google Scholar 

  • Davar G. Hama A, Dcykin A, Vos B, Maciewicz R (1991) MK-801 blocks the development of thermal hyperalgesia in a rat model of experimental painful neuropathy. Brain Res 553: 327–330

    Article  PubMed  CAS  Google Scholar 

  • Davidoff RA, Graham LT, Shank RP, Werman R, Aprison MH (1967) Changes in amino acid concentrations associated with loss of spinal interneurons. J Neurochem 14: 1025–1031

    Article  PubMed  CAS  Google Scholar 

  • Davidoff RA (1989) Mode of action of antispasticity drugs. In: Park TS, Phillips LH, Peakock WJ (eds) Management of Spasticily in Cerebral Palsy and Spinal Cord Injury. Neurosurgery: State of the art review. Hanley & Belfus, Philadelphia, pp 315–324

    Google Scholar 

  • Delwaide PJ (1985) Electrophysiological analysis of the mode of aciton of muscle relaxants in spasticity. Ann Neurol 17: 90–95

    Article  PubMed  CAS  Google Scholar 

  • Dickenson AH. Sullivan AF(1990) Differential effects of excitatory amino acid antagonists on dorsal horn nociceptive neurones in the rat. Brain Res 506: 31–39

    Article  PubMed  CAS  Google Scholar 

  • Dimitrijevic MM, Dimitrijevic MR, Sherwood AM, Vanderlinden C (1989) Clinical europhysiological techniques in the assessment of spasticity. In: Park TS, Phillips LH, Peakock WJ (eds) Physical Medicine and Rehabilitation: State of the Art Reviews.Hanley & Belfus, Philadelphia, pp 64–83

    Google Scholar 

  • Erdo SL (1990) Strycnine protection against excitotoxic cell death in primary cultures of rat cerebral cortex. Neurosci Lett 115: 341–344

    Article  PubMed  CAS  Google Scholar 

  • Faganel J, Dimitrijevic MR (1982) Study of Propriospinal interneuron system in man. J Neurol Sci 56: 155–172

    Article  PubMed  CAS  Google Scholar 

  • Fagg GE, Jordan CC, Webster RA (1978) Descending fibre-mediated release of endogenous glutamate and glycine from the perfused cat spinal cord in vivo. Brain Res 158: 159–

    Article  PubMed  CAS  Google Scholar 

  • Fagg GE. Foster AC (1983) Amino acid neu retransmitters and their pathways in the mammalian central nervous system. Neurosciencc 9: 701–719

    Article  CAS  Google Scholar 

  • Farrant M, Webster RA (1989) Boulton A, Baker GB, Juorio AV (eds) Drugs as Tools in Neurotransmitter Research. Humana Press, Clifton, pp 161–219

    Chapter  Google Scholar 

  • Farrant M, Gibbs TT, Farb DH (1990) Molecular and cellular mechanisms of GABA/ Benzodiazepine-receptor regulation: Electrophysiological and biochemical studies. Neurochem Res 15: 175–191

    Article  PubMed  CAS  Google Scholar 

  • Fasano VA, Barolat-Romana G, Zeme S, Sguazzi L (1979) Electrophysiological assessment of spinal circuits in spasticity by direct dorsal root stimulation. Neurosurgery 4: 146–151

    Article  PubMed  CAS  Google Scholar 

  • Ganes T (1982) Synaptic and non-synaptic components of the human cervical evoked response. J Neurol Sci 4: 313–326

    Article  Google Scholar 

  • Gelfan S, Tarlov IM (1955) Differential vulnerability of spinal cord structures to anoxia. J Neurophysiol 18: 170–188

    PubMed  CAS  Google Scholar 

  • Gerber G, Cerne R, Randic M (1991) Participation of excitatory amino acid receptors in the slow excitatory synapfic transmission in rat spinal dorsal horn. Brain Res 561: 236–251

    Article  PubMed  CAS  Google Scholar 

  • Graham LT, Shank RP, Werman R. Aprison MH (1967) Distribution of some synaptic transmitter suspects in cat spinal cord: glutamic acid, aspartic acid, γ-aminobutyric acid, glycine, and glutamine. J Neurochem 14: 465–472

    Article  PubMed  CAS  Google Scholar 

  • Grossi EA, Laschinger JC, Krieger KH, Nathan IM, Colvin SB, Weiss MR, Baumann FG (1988) Epidural-evoked potentials: A more specific indicator of spinal cord ischemia. J Surg Res 44: 224–228

    Article  PubMed  CAS  Google Scholar 

  • Hall PV, Smith JE, Lane J, Mote T, Campbell R (1979) Glycine and experimental spinal spasticity. Neurology 1979; 29: 262–267

    Article  PubMed  CAS  Google Scholar 

  • Hammerstad JP, Murray JE, Cutler RWP (1971) Efflux of amino acid neurotransmitters from rat spinal cord slices. II. Factors influencing the electrically induced efflux of [14C] glycine, and 3H-Gaba. Brain Res 35: 357–367

    Article  PubMed  CAS  Google Scholar 

  • Hao JX, Xu XJ, Aldskogius H, Seiger A, Hallin ZW (1991) The excitatory amino acid receptor antagonist MK-801 prevents the hypersensitivity induced by spina cod ischemia in the rat. Exp Neurol 113: 182–191

    Article  PubMed  CAS  Google Scholar 

  • Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32: 77–88

    Article  PubMed  CAS  Google Scholar 

  • Harrison PJ, Jankowska E (1985) Organization of input to the interneurons mediating group I non-reciprocal inhibition of motoneurons in the cat. Part 1. J Physiol (Lond) 361: 379–401

    CAS  Google Scholar 

  • Harrison PJ, Jankowska E (1985) Sources of input to interneurons mediating group 1 non-reciprocal inhibition of motorneurons in the cat. Part 2. J Physiol (Lond) 361: 403–418

    CAS  Google Scholar 

  • Heller AH, Hallett M (1982) Electrophysioioigcal studies with the spastic mutant mouse. Brain Res 234: 299–308

    Article  PubMed  CAS  Google Scholar 

  • Henneman E, Mendell LM (1981) Functional organization of motorneuron pool and its inputs. In: Brookhart JM, Mountcastle VB (eds) The Nervous System, Handbook of Physiology, American Physiological Society, Bethesda, pp 423–507

    Google Scholar 

  • Herz DA, Looman JE, Tiberio A, Ketterling K, Kreitsch RK, Colwill HC, Grin OD (1990) The management of paralytic spasticity. Neurosurgery 26: 300–306

    Article  PubMed  CAS  Google Scholar 

  • Hopkin J, Neal MJ (1971) Effect of electrical stimulation and high potassium concentrations on the efflux of [14C] glycine from slices of spinal cord. Br J Pharmacol 42: 215–233

    Article  PubMed  CAS  Google Scholar 

  • Howell DA, Lees AJ, Toghill PJ (1979) Spinal internuncial neurones in progressive encephalomyelitis with rigidity. J Neurol Neurosurg Psychiatry 42: 773–785

    Article  PubMed  CAS  Google Scholar 

  • Hunt SP (1983) Cytochemistry of the spinal cord. Tn: Emson PC (ed) Chemical Neuro-hemistry. Raven Press, New York, pp 53–84

    Google Scholar 

  • Juhasz G, Ernri Z, Kekesi K, Pungor K (1989) Local perfusion of the thalamus with GABA increses sleep and induces long-lasting inhibition of somatosensory event-related potentials in cats. Neurosci Lett 103: 229–23

    Article  PubMed  CAS  Google Scholar 

  • Kajander KC, Wakisaka S, Bennett GJ (1992) Spontaneous disharge originates in the dorsal root ganglion at the onset of a painful peripheral neuropathy in the rat. Neurosci Lett 138: 225–228

    Article  PubMed  CAS  Google Scholar 

  • Kanek M, Fukamachi A, Sasaki H, Miyazawa N, Yagishita, Nukui H (I988) Intraoperative moinitoring of the motor function: Experimental and clinical study. Acta Neurochir Scand [Suppl] 42: 18–21

    Article  Google Scholar 

  • Kish PE, Fischer-Bovenkerk C, Ueda T (1989) Active transport of g-aminobuiyric acid and glycine into synaptic vesicles. Proc Natl Acad Sci 86: 3877–3881

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa H, Itoh T, Takano H, Takakuwa K, Yamamoto N, Yamada H, Tsuji H (1989) Motor evoked potential monitoring during upper cervical spine surgery. Spine 14: 1078–1083

    Article  PubMed  CAS  Google Scholar 

  • Kuypers HGJM (1973) In: Desmedt JE (ed) New Developments in Electromyography and Clinical Neurophysiology. Karger, Basel, pp 38–68

    Google Scholar 

  • Kuypers HGJM (1981) Anatomy of the descending pathways. In: Brookhart JM, Mountcastle VB (eds) Handbook of Physiology: The Nervous System. The American Physiological Society, Bethesda, pp 597–666

    Google Scholar 

  • Laird JMA, Bennett GJ (1992) Dorsal root potentials and afferent input to the spinal cord in rats with an experimental peripheral neruopathy. Brain Res 584: 181–190

    Article  PubMed  CAS  Google Scholar 

  • Larson AA (1989) Intrathecal GABA, glycine, taurine or beta-alanine elicits dyskinetic movements in mice. Pharmaco3 Biochem Behav 32: 505–509

    Article  CAS  Google Scholar 

  • Lester RAJ, Tong G, Jahr CE (1993) Interactions between the glycine and glutamate binding sites of the NMDA receptor. J Neurosci 13: 1088–1096.

    PubMed  CAS  Google Scholar 

  • Levy WJ, York DH, McCaffrey M, Tanzer F (1984) Motor evoked potentials from transcranial stimulation of the motor cortex in humans. Neurosurgery 15: 287–302

    Article  PubMed  CAS  Google Scholar 

  • Lindsley DB, Schreiner LH, Magoun HW (1949) An electromyographic study of spasticity. J Neurophysiol 12: 197–205

    PubMed  CAS  Google Scholar 

  • Ljungdahl A, Hokfelt T(1973) Accumulation of 3H-glycine in interneurons of the cat spinal cord. Histochemie 33: 277–280

    PubMed  CAS  Google Scholar 

  • Lloyd DPC (1953) Influence of asphyxia upon the responses of spinal motorneurons. J Gen Physiol 32: 409–443

    Article  Google Scholar 

  • Lundberg A, Norrsell U, Voorhoeve P (1962) Pyramidal effects on lumbosacral interneur-ones activated by somatic afferents. Acta Physiol Scand 56: 220–229

    Article  PubMed  CAS  Google Scholar 

  • Lynch DR, Anegawa NJ, Verdoorn T, Pritchett DB (1993) N-methyl-D-aspartate receptors: different subunit requirements for binding of glutamate antagonists, glycine antagonists, and channel-blocking agents. Molec Pharmacol 45: 540–545

    Google Scholar 

  • Magoun HW, Rhines R (1946) An inhibitory mechanism in the bulbar reticular formation. J Neurophysiol 9: 165–17

    PubMed  CAS  Google Scholar 

  • Mailis A, Ashby P (1990) Alterations in group la projections to motoneurons following spinal lesions in humans. J Neurophysiol 64: 637–647

    PubMed  CAS  Google Scholar 

  • Makitie J, Teravainen H (1977) Spinal cord dorsum potentials recorded in vivo after cold injury to the sural nerve in the rabbit. Cryobiology 14: 190–196

    Article  PubMed  CAS  Google Scholar 

  • Mao J, Price DD, Mayer DJ, Lu J, Hayes RL (1992) Intrathecal MK-801 and local nerve anesthesia synergisticallyl reduce nociceplive behaviors in rats with experimental peripheral mononeuropathy. Brain Res 576: 254–262

    Article  PubMed  CAS  Google Scholar 

  • Mao J, Price DD, Hayes RL, Lu j, Mayer DJ (1992) Differential roles of NMDA and non-NMDA receptor activation in induction and maintenance of thermal hyperalgesia in rats with painful peripheral mononeuropathy. Pain 49: 271–278

    Google Scholar 

  • Mao J, Price DD, Mayer DJ (1994) Thermal hyperalgesia in association with the development of morphine tolerance in rats: roles of excitatory amino acid receptors and protein kinase. C J Neurosci 14: 2301–2312

    CAS  Google Scholar 

  • Martiniak J. Chavko M, Danielisova V, Marsala J (1989) Regional concentrations of transmitter amino acids after spinal cord ischaemia in the rabbit. Physiol Bohemoslov 38: 275–281

    PubMed  CAS  Google Scholar 

  • Masland R (1985) Preface, In: Eccles J, Dimitrijevic MR (eds) Recent Achievements in Restorative Neurology. Upper Motor Neuron Functions and Dysfunctions. Karger, Basel, xv–xvi

    Google Scholar 

  • Mathias CJ, Luckitt J, Desai P, Baker H, Masri WE, Frankel HL (1989) Pharmacodynamics and pharmacokinetics of the oral antispatic agent tizanidine in patients with spinal cord injury. J Rehab Res Devel 26: 9–16

    CAS  Google Scholar 

  • McNamara D, Dingledine R (1990) Dual effect of glycine on NMDA-induced neuroloxicity in rat cortical cultures. I Neurosci 10: 3970–3976

    CAS  Google Scholar 

  • Meinck MM (1976) Occurrence of the H reflex and the F wave in the rat. Electroencephalogr Clin Neurophysiol 41:530–533

    Article  PubMed  CAS  Google Scholar 

  • Melzack R, Wall PD (1965) Pain mechanisms: A new theory. Science 150: 971–979

    Article  PubMed  CAS  Google Scholar 

  • Meyerson BA, Linderoth B. Karlsson H, Ungerstedi U (1990) Microdialysis in the human brain: extracellular measurements in the thalamus of parkinsonian patients. Life Sci 46: 301–308

    Article  PubMed  CAS  Google Scholar 

  • Mitchell K, Spike RC, Todd AJ (1993) An immunocytochemical study of glycine receptor and GABA in lamine 1-III of rat spinal dorsal horn. J Neurosci 13: 2371–2381

    PubMed  CAS  Google Scholar 

  • Mitchell SW, Morehouse GR, Keen WW (1864) Gunshot wounds and injuries of nerves. Lippincott, Philadelphia

    Google Scholar 

  • Nathan PW, Smith MC (1959) Fasciculi proprii of the spinal cord in man. Review of present knowledge. Brain 82: 610–668

    CAS  Google Scholar 

  • Neilson PD (1972) Interaction between voluntary contraction and tonic stretch reflex transmission in normal and spastic patients. J Neurol Neurosurg Psychiatry 35: 853–860

    Article  PubMed  CAS  Google Scholar 

  • Nicola MA, Becker CM, Triller A (1992) Development of glycine receptor alpha subunit in cultivated rat spinal neurons: an immunocyochemical study. Neurosci Lett 138: 173–178

    Article  PubMed  CAS  Google Scholar 

  • Nogaoka NH, Sadurada S, Sadurad T, Takeda S, Nakagawa Y, Kisara K, Arai Y (3993) Theophylline-induced nociceptive behavioral responses in mice: possible indirect interaction with spinal N-methyl-D-aspartate receptors. Neurochem Int 22: 69–74

    Article  Google Scholar 

  • North RB, Ewend MG, Lawton MT, Kidd DH, Piantadosi S (1991) Failed back surgery syndrome: 5-year follow-up after spinal cord stimulator implantation, Neurosurgery 28: 692–699

    Article  PubMed  CAS  Google Scholar 

  • Panter SS, Yum SW, Faden AI (1990) Alteration in extracellular amino acids after traumatic spinal cord injury. Ann Neuroi 27: 96–99

    Article  CAS  Google Scholar 

  • Patel J, Zinkland WC, Thompson C, Keith R, Salama A (1990) Role of glycine in the N-methyl-D-aspartate-mediated neuronal cytotoxicity. J Neurochem 54: 849–854

    Article  PubMed  CAS  Google Scholar 

  • Quan N, Blatteis CM (1989) Microdialysis: A system for localized drug delivery into the brain. Brain Res Bull 22: 621–625

    Article  PubMed  CAS  Google Scholar 

  • Randall LO, Selitto JJ (1957) A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn 311: 409–419

    Google Scholar 

  • Rao TS, Cler JA, Emmett MR, Mick SJ, Iyengar S, Wood PL (1990) Glycine, glycinamide and D-serine act as positive modulators of signal transduction at the N-methyl-D-aspartate (NMDA) receptor in vivo: differential effects on mouse cerebellar gyclic guanosine monophosphate levels. Neuropharamacology 29: 1075–1080

    Article  CAS  Google Scholar 

  • Ren K, Hylden LK, Williams GM, Ruda MA, Dubner R (1992) The effects of a non-competative NMDA receptor antagonist, MK-801, on behavior hyperalgesia and dorsal horn neuronal activity in rats with unilateral inflammation. Pain 50: 331–344

    Article  PubMed  CAS  Google Scholar 

  • Rizzoli AA (1968) Distribution of glutamic acid, aspartic acid, g-aminobutyric acid and glycine in six areas of cat spinal cord before and after transection. Brain Res 11: 11–18

    Article  PubMed  CAS  Google Scholar 

  • Roberts P.J, Mitchell JF (1972) The release of amino acids from the hemisected spinal cord during stimulation. j Neurochem 19: 2473—2481

    Google Scholar 

  • Rudick RA, Breton D, Krall RL (1987) The Gaba-agonist progabide for spasticity in multiple sclerosis. Arch Neurol 44: 1033–1036

    Article  PubMed  CAS  Google Scholar 

  • Rudomin P, Solodkin M, Jimenz I (1986) PAD and PAH response patterns of group la and Ib fibers to cutaneous and descending inputs to the cat spinal cord. J Neurophysiol 56: 987–1006

    PubMed  CAS  Google Scholar 

  • Rudomin P, Solodkin M, Jimenz I (1987) Synaptic potentials of primary efferent fibers and motorneurons evoked by single intermediate nucleus interneurons in the cat spinal cord. j Neurophysiol 57: 1288–1313

    PubMed  CAS  Google Scholar 

  • Rudomin P, Jimenez I, Quevedo J, Solodkin M (1990) Pharmacologic analysis of inhibition produced by last-order intermediate neucleus interneurons mediating nonreciprocal inhibition of motoneurons in cat spinal cord-j Neurophysiol 63: 147–160

    CAS  Google Scholar 

  • Rymer WZ, Powers RK (1989) Pathophysiology of muscular hypertonia in spasticity. Management of spasticity in cerebral palsly and spinal cord injury In: Park TS, Phillips LH, Peakock WJ (eds) Physical Medicine and Rehabilitation: State of the art reviews. Hanley & Belfus, Philadelphia, pp 291–301

    Google Scholar 

  • Scheardown MJ, Drejer J, Jensen LH, Stidsen CE. Honore T (1989) A potent antagonist of the strychnine inbsensitive glycine receptor has anticonvulsant properties. Europ J Pharmacol 174: 197–204

    Article  Google Scholar 

  • Schreiner LH, Lindsley D, Magoun HW (1949) Role of brain stem facilitatory systems in maintenance of spasticity. J Neurophysiol 12: 207–216

    PubMed  CAS  Google Scholar 

  • Schwartzman RJ (1992) Reflex symmpathetic dystrophy and causalgia. The neurology of trauma. Neurologic Clin 10: 953–973

    CAS  Google Scholar 

  • Semba J, Patsalos PN (1993) Milacemide effects on the temporal inter-relationship of amino acids and monoamine metabolites in rat cerebrospinal fluid. Europ J Pharmacol 230: 321–326

    Article  CAS  Google Scholar 

  • Shank RP, Aprison MH (1970) The metabolism in vivo of glycine and serine in eight areas of the rat central nervous system. J Neurochem 17: 1461–3475

    Article  PubMed  CAS  Google Scholar 

  • Shapovalov Al (1975) Neuronal organization and synaptic mechanisms of supraspinal motor control in vertebrates. Rev Physiol Biochem Pharmacol 72: 1–54

    Article  PubMed  CAS  Google Scholar 

  • Sheen K, Chung JM (1993) Signs of neuropathic pain depend on signals from injured nerve fibers in a rat model. Brain Res 610: 62–68

    Article  PubMed  CAS  Google Scholar 

  • Sher GD, Mitchell D (1990) N-methyl-D-aspartate receptors mediate responses of rat dorsal homneurones to hindlimb ischemia. Brain Res 522: 55–62

    Article  PubMed  CAS  Google Scholar 

  • Sherrington CS, Sowion SCM (1915) Observations on reflex responses to single break shocks. J Physiol (Lond) 49: 331–348

    CAS  Google Scholar 

  • Shimoji K, Shimizu H, Maruyama Y (1978) Origin of somatosensory evoked responses recorded from; the cervical skin surface. J Neurosurg 48: 980–984

    Article  PubMed  CAS  Google Scholar 

  • Shuaib A, Xu K, Grain B, Siren AL, Feuerstein G, Hallenbeck j, Davis JN (1990) Assessment of damage from implantation of microdialysis probes in the rat hippocampus with silver degeneration staining. Neurosci Lett 1 12:149–154

    Article  Google Scholar 

  • Simpson RK Jr. Robertson CS, Goodman JC (1989) Alterations in the corticomotor evoked potential following spinal cord ischemia. J Neurosci Meth 28: 171–178

    Article  Google Scholar 

  • Simpson RK Jr, Robertson CS, Goodman JC (1990) Spinal cord ischemia-induced elevation of amino acids: extracellular measurement with microdialysis. Neurochem Res 15: 635–639

    Article  PubMed  CAS  Google Scholar 

  • Simpson RK Jr, Robertson CS, Goodman JC (1991) Segmentai release of amino acid neurotransmitters from transcranial stimulation. Neurochem Res 16: 89–94

    Article  PubMed  CAS  Google Scholar 

  • Simpson RK Jr, Robertson CS, Goodman JC (1991) Release of segmental amino acid neurotransmitters in response to peripheral afferent and motor cortex stimulation: A pilot study. In Press, Life Sci (Pharm Lett) 49: 113–118

    Google Scholar 

  • Simpson RK Jr, Robertson CS, Goodman JC, Halter JA (1991) Recovery of amino acid neurotransmitters from the spinal cord during posterior epidural stimulation: A preliminary report. J Am Paraplegia Soc 14: 4–9

    Google Scholar 

  • Simpson RK Jr, Robertson CS. Goodman JC (1992) Segmental amino acid neurotransmitter recovery during posterior epidural stimulation after spinal cord injury. J Am Paraplegia Soc 16: 34–41

    Google Scholar 

  • Simpson RK Jr, Robertson CS. Goodman JC (3993) Glycine: An important potential component of spinal shock. Neurochem Res 18: 887–892

    Article  Google Scholar 

  • Simpson RK Jr, Robertson CS, Goodman JC (1993) Glycine: A potential mediator of electrically induced pain modification. Biomed Lett 48: 393–207

    Google Scholar 

  • Simpson RK Jr, Robertson CS, Goodman JC (1993) Spinal epidural corticomotor evoked potentials as a predictor of outcome from ischemic myelopathy. Neurol Res 15: 104–108

    PubMed  CAS  Google Scholar 

  • Simpson RK Jr, Gondo MM, Robertson CS, Goodman JC (1995) The influence of glycine and related compounds on spinal cord injury induced spasticity. Neurochem Res 20: 1203–1230

    Article  PubMed  Google Scholar 

  • Simpson RK Jr, Robertson CS, Goodman JC (1995) Reduction of mechanonociceptive and thermonociceptive responses by intrathecal administration of glycine and related compounds. Surgical Forum 46: 583–583

    Google Scholar 

  • Simpson RK Jr, Gondo MM, Robertson CS, Goodman JC (3 996) Reduction in the mechanonociceptive response by intrathecal administration of glycine and related compounds. Neurochem Res 21:1221–1226

    Article  Google Scholar 

  • Simpson RK Jr, Gondo MM, Robertson CS, Goodman JC (1996) Reduction in thermal hyperalgesia by intrathecal administration of glycine and related compounds. Neurochem Res 22: 75–79

    Article  Google Scholar 

  • Simpson RK Jr, Robertson CS, Goodman JC (1996) The role of glycine in spinal shock. J Spinal Cord Med 19: 215–224

    PubMed  Google Scholar 

  • Smith JE, Hall PV, Galvin MR, Jones AR, Campbell RL (1979) Effects of glycine administration on canine experimental spinal spasticity and the levels of glycine. glutamate, and aspartate in the lumbar spinal cord. Neurosurgery 4: 152–356

    CAS  Google Scholar 

  • Song XJ, Zhao ZQ (1993) Differential effects of NMDA and non-NMDA receptor antagonists on spinal cutaneous vs muscular nociception in the cat. Neuroreport 4: 17–20

    Article  PubMed  CAS  Google Scholar 

  • Sotgui ML (1993) Descending influence on dorsal horn neuronal hyperactivity in a rat model of neuropathic pain. Neuroreport 4: 21—24

    Google Scholar 

  • Sugimoto T, Bennett GJ, Kajander (1989) Strychnine-enhanced transsynaptic degeneration of dorsal horn neurons in rats with an experimental painful peripheral neuropathy. Neurosci Lett 98: 139–143

    Article  PubMed  CAS  Google Scholar 

  • Thompson PD, Dick JPR, Asseiman R Griffin GB, Day BL, Rothwell JC, Sheehy MP, Marsden CD (1987) Examination of motor function in lesions of the spinal cord by stimulation of the motor cortex. Ann Neurol 21: 389–396

    Article  PubMed  CAS  Google Scholar 

  • Thomson AM (1990) Glycine is a coagonisl at the NMDA receptor/channel complex. Prog Neurobiol 35: 53–74

    Article  PubMed  CAS  Google Scholar 

  • Todd AJ (1989) Cells in laminae III and IV of rat spinal dorsal horn receive monosynaptic primary afferent input in lamina II. J Comp Neurol 289: 676–686

    Article  PubMed  CAS  Google Scholar 

  • Turski L, Schwarz M, Turski WA, Klockgether T, Sontag KH, Collins JF (1985) Muscle relaxant action of excitatory amino acid antagonists. Neurosci Lett 53: 321–326

    Article  PubMed  CAS  Google Scholar 

  • Turski L, Kiockgether T, Schwarz M, Sontag KH, Meldrum BS (1987) Neuroscience 20: 285–2

    Article  PubMed  CAS  Google Scholar 

  • Van den Pol AN, Gores T (1988) Glycine and glycine receptor immunoreactivity in brain and spinal cord. J Neurosci 8: 472–492

    PubMed  Google Scholar 

  • Waltz JM (1982) Computerized percutaneous multilevel spinal cord stimulation in motor disorders. Appl Neurophysiol 45: 73–92

    PubMed  CAS  Google Scholar 

  • Weil S (1992) Reflex sympathetic dystrophy. In: Evans RW, Baskin DS, Yatsu FM (eds) Prognosis of Neurological Disorders. Oxford University Press, New York, pp 601–605

    Google Scholar 

  • Werman R, Davidoff RA, Aprison MH (1967) Evidence for glycine as the principal transmitter mediating postsynaptic inhibition in the spinal cord of the cat. J Gen Physiol 50: 1093–1094

    Google Scholar 

  • Werman R, Davidoff RA, Aprison MH (1968) Inhibitory action of glycine on spinal neurons in the cat. J Neurophysiol 31: 81–95

    PubMed  CAS  Google Scholar 

  • Wood PL, Emmett MR, Rao TS, Mick S, Cler J, Lyengar S (1989) Part 1. J Neurochem 53: 979–98

    Article  PubMed  CAS  Google Scholar 

  • Wood PL, Emmett MR, Rao TS, Mick S, Cler j, Lyengar S (1989) In vivo modulation of the N-methyl-D-asparlate receptor complex by D-serine: potentiation of ongoing neuronal activity as evidenced by increased cerebellar cyclic GMP. Part 2. J Neurochem 53: 982–991

    Article  Google Scholar 

  • Yaksh TL (1989) Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain 37: 111–123

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T. Yaksh TL (1992) Spinal pharmacology of thermal hyperesthesia induced by constriction injury of sicatic nerve. Excitaloryo amino acid antagonists. Pain 49: 121–128

    CAS  Google Scholar 

  • Yamamoto T, Yaksh TL (1993) Effects of intrathecal strychnine and bicuculline on nerve compression-induced thermal hyperalgesia and selective antagonism by MK-801. Pain 54: 79–84

    Article  PubMed  CAS  Google Scholar 

  • Yates BJ, Thompson FJ, Mickle JP (1982) Origin and properties of spinal cord field potentials. Neurosurgery 11: 439–450

    Article  PubMed  CAS  Google Scholar 

  • Yoneda Y, Ogita K, Suzuki T (1990) Interaction of strychnine-insensitive glycine binding with MK-801 binding in brain synaptic membranes. J Neurochem 55: 237–244

    Article  PubMed  CAS  Google Scholar 

  • Young AB, Snyder SH (1973) Strychnine binding associated with glycine receptors of the central nervous system. Proc Nat Acad Sci 70: 2832–2836

    Article  PubMed  CAS  Google Scholar 

  • Young AB, Macdonald RL (1987) Glycine as a spinal cord neurotransmitter. In: Davidoff RA (ed) Handbook of the spinal cord. Marcel Dekker, New York, pp 1–44

    Google Scholar 

  • Zeglgansberger W, Champagnat J (1979) Cat spinal motorneurones exhibit topographic sensitivity to glutamate and glycine. Brain Res 160: 95–104

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this chapter

Cite this chapter

Simpson, R.K., Robertson, C.S., Goodman, J.C. (1998). The role of glycine in pain and spasticity. In: Stålberg, E., Sharma, H.S., Olsson, Y. (eds) Spinal Cord Monitoring. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6464-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6464-8_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7329-9

  • Online ISBN: 978-3-7091-6464-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics