Skip to main content
Log in

Spinal cord ischemia-induced elevation of amino acids: Extracellular measurement with microdialysis

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Excitatory amino acids have been implicated in the production of calcium mediated neuronal death following central nervous system ischemia. We have used microdialysis to investigate changes in the extracellular concentrations of amino acids in the spinal cord after aortic occlusion in the rabbit. Glutamate, aspartate, glutamine, asparagine, glycine, taurine, valine, and leucine were measured in the micordialysis perfusate by high pressure liquid chromatography. The concentrations of glutamate, glycine, and taurine were significantly higher during ischemia and reperfusion than controls. Delayed elevations in the concentrations of asparagine and valine were also detected. The elevation of glutamate is consistent with the hypothesis that excitotoxins may mediate neuronal damage in the ischemic spinal cord. Increased extracellular concentrations of asparagine and valine may reflect preferential use of amino acids for energy metabolism under ischemic conditions. The significance of increased concentrations of inhibitory amino acid neurotransmitters is unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simon, R. P., Swan, J. H., Griffiths, T., and Meldrum, B. S. 1984. Blockade of N-Methyl-D-Aspartate receptors may protect against ischemic damage in the brain. Science 2216:850–852.

    Google Scholar 

  2. Faden, A. I. and Simon, R. P. 1988. A potential role for excitotoxins in the pathophysiology of spinal cord injury. Ann. Neurol. 23:623–626.

    Google Scholar 

  3. Choi, D. W. 1985. Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci. Lett. 58:293–297.

    Google Scholar 

  4. Wahl, P., Schousboe, A., Honore, T., and Drejer, J. 1989. Glutamate-induced increase in intracellular Ca2+ in cerebral cortex neurons is transient in immature cells but permanent in mature cells. J. Neurochem. 53:1316–1319.

    Google Scholar 

  5. Zanotto, L., and Heinemann, U. 1983. Aspartate and glutamate induced reductions in extracellular free calcium and sodium concentration in area CA1 of ‘in vitro’ hippocampal slices of rats. Neurosci. Lett. 35, 79–84.

    Google Scholar 

  6. Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N. H. 1984. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43:1369–1374.

    Google Scholar 

  7. Butcher, S. P., Sandberg, M., Hagberg, H., and Hamberger, A. 1987. Cellular origins of endogenous amino acids released into the extracellular fluid of the rat striatum during severe insulin-induced hypoglycemia. J. Neurochem. 48:722–728.

    Google Scholar 

  8. Faden, A. I., Demediuk, P., Panter, S. S., and Vink, R. 1989. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244:798–800.

    Google Scholar 

  9. Demediuk, P., Daly, M. P., and Faden, A. I. 1989. Effect of impact trauma on neurotransmitter and nonneurotransmitter amino acids in rat spinal cord. J. Neurochem. 52:1529–1536.

    Google Scholar 

  10. Brodin, E., Linderoth, B., Gaselius, B., and Ungerstedt, U. 1987.In vivo release of substance P in cat dorsal horn studied with microdialysis. Neurosci. Lett. 76:357–362.

    Google Scholar 

  11. Robertson, C. S., and Grossman, R. G. 1987. Protection against spinal cord ischemia wit insulin-induced hypoglycemia. J. Neurosurg. 67:739–744.

    Google Scholar 

  12. Skilling, S. R., Smullin, D. H., Beitz, A. J., and Larson, A. A. 1988. Extracellular amino acid concentrations in the dorsal spinal cord of freely moving rats following veratridine and nociceptive stimulation. J. Neurochem. 51:127–132.

    Google Scholar 

  13. Sorkin, L. S., Steinman, J. L., Hughes, M. G., Willis, W. D., and McAdoo, D. J. 1988. Microdialysis recovery of serotonin released in the spinal cord dorsal horn. J. Neurosci. Meth. 23:131–138.

    Google Scholar 

  14. Cheng, M. K., Robertson, C., Grossman, R. G., Foltz, R., and Williams, V. 1984. Neurological outcome correlated with spinal evoked potentials in a spinal cord ischemia model. J. Neurosurg. 60:786–795.

    Google Scholar 

  15. Simpson, R. K. Jr., Robertson, C. S., and Goodman, J. C. 1989. Alterations in the corticomotor evoked potential following spinal cord ischemia. J. Neurosci. Meth. 28:171–178.

    Google Scholar 

  16. Bidlingmeyer, B. A., Cohen, S. A., Tarvin, T. L. 1984. Rapid analysis of amino acids using pre-column derivatization. J. Chromatogr. 336:93–104.

    Google Scholar 

  17. Cohen, S. A., Bidlingmeyer, B. A., Tarvin, T. L. 1986. PITC derivatives in amino acid analysis. Nature 320:769–770.

    Google Scholar 

  18. Drejer, J., Benveniste, H., Diemer, N. H., and Schousboe, A. 1985. Cellular origin of ischemia-induced glutamate release from brain tissuein vivo andin vitro. J. Neurochem. 45:145–151.

    Google Scholar 

  19. Cooper, J. R., Bloom, F. E., and Roth, R. H. 1986. Pages 124–172,in The Biochemical Basis of Neuropharmacology, Oxford University Press, New York.

    Google Scholar 

  20. Hagberg, H., Lehmann, A., Sandberg, M., Nystrom, B., Jacobson, I., and Hamberger, A. 1985. Ischemia-induced sift of inhibitory and excitatory amino acids from intra- to extracellular compartments. J. Cereb. Blood Flow Metab. 5:413–419.

    Google Scholar 

  21. Faden, A. I., Lemke, M., Simon, R. P., and Noble, L. J. 1988. N-Methyl-D-Aspartate antagonist MK801 improves outcome following traumatic spinal cord injury in rats: Behavioral, anatomic, and neurochemical studies. J. Neurotrauma 5:33–45.

    Google Scholar 

  22. Panter, S. S., Yum, S. W., and Faden, A. I. 1990. Alteration in extracellular amino acids after traumatic spinal cord injury. Ann. Neurol. 27:96–99.

    Google Scholar 

  23. Benveniste, H. 1989. Brain microdialysis: short review. J. Neurochem. 52:1667–1679.

    Google Scholar 

  24. Fagg, G. E., and Foster, A. C. 1983. Amino acid neurotransmitters and their pathways in the mammalian central nervous system. Neuroscience 9:701–719.

    Google Scholar 

  25. Graham, L. T., Shank, R. P., Werman, R., and Aprison, M. H. 1967. Distribution of some synaptic transmitter suspects in cat spinal cord: glutamic acid, aspartic acid, γ-amino butyric acid, glycine, and glutamine. J. Neurochem. 14:465–472.

    Google Scholar 

  26. White, A., Handler, P., and Smith, E. L. 1973. Principles of Biochemistry, Pages 677–704, McGraw-Hill Book Company, New York.

    Google Scholar 

  27. Chizhmakov, I. V., Kiskin, N. I., Krishtal, O. A., and Tsyndrenko, A. Y. 1989. Glycine action on N-methy-D-aspartate receptors in rat hippocampal neurons. Neurosci. Lett. 99:131–136.

    Google Scholar 

  28. Larson, A. A. 1989. Intrathecal GABA, glycine, taurine or beta-alanine elicits dyskinetic movements in mice. Pharmacol. Biochem. Behav. 32:505–509.

    Google Scholar 

  29. Zeevalk, G. D., Hyndman, A. G., and Nicklas, W. J. 1989. Excitatory amino acid-induced toxicity in chick retina: amino acid release, histology, and effects of chloride channel blockers. J. Neurochem. 53, 1610–1619.

    Google Scholar 

  30. Padjen, A. L., Mitsoglou, G. M., and Hassessian, H. 1989. Further evidence in support of taurine as a mediator of synaptic transmission in the frog spinal cord. Brain Res. 488:288–296.

    Google Scholar 

  31. Oja, S. S., and Kontro, P. 1983. Taurine.in Pages 501–533, Lajtha, A., (ed), Handbook of Neurochemistry, Plenum Press, New York.

    Google Scholar 

  32. Lehmann, A., Hagberg, H., and Hamberger, A. 1984. A role for taurine in the maintenance of homeostasis in the central nervous system during hyperexcitation? Neurosci. Lett. 52:341–346.

    Google Scholar 

  33. Fariello, R. G., Golden, G. T., and Pisa, M. 1982. Homotaurine (3 aminopropanesulfonic acid; 3APS) protects from the convulsant and cytotoxic effect of systemically administered kainic acid. Neurology 32:241–245.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simpson, R.K., Robertson, C.S. & Goodman, J.C. Spinal cord ischemia-induced elevation of amino acids: Extracellular measurement with microdialysis. Neurochem Res 15, 635–639 (1990). https://doi.org/10.1007/BF00973755

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973755

Key Words

Navigation