Skip to main content

Apoptosis as a general cell death pathway in neurodegenerative diseases

  • Conference paper
Advances in Research on Neurodegeneration

Summary

Neurodegenerative processes are generally characterized by the long-lasting course of neuronal death and the selectivity of the neuronal population or brain structure involved in the lesion. Two main common forms of cell death that have been described in neurons as in other vertebrate tissues i.e., necrosis and apoptosis. Necrosis is the result of cellular “accidents”, such as those occurring in tissues subjected to chemical trauma. The necrotizing cells swell, rupture and provoke an inflammatory response. Apoptosis, on the other hand, is dependent on the cell’s “decision” to commit suicide and die, and therefore is referred to as “programmed cell death” (PCD). The course of apoptotic death is characterized by a massive morphological change, including cell shrinkage, nuclear (chromosome) condensation and DNA degradation. Activation of PCD in an individual cell is based on its own internal metabolism, environment, developmental background and its genetic information. Such a situation occurs in most of the neurodegenerative disorders such as Alzheimer’s, Parkinson’s and Huntington’s diseases and amyotrophic lateral sclerosis (ALS). In these pathological situations, specific neurons undergo apoptotic cell death characterized by DNA fragmentation, increased levels of pro-apoptotic genes and “apoptotic proteins” both, in human brain and in experimental models. It is of utmost importance to conclusively determine the mode of cell death in neurodegenerative diseases, because new “antiapoptotic” compounds may offer a means of protecting neurons from cell death and of slowing the rate of cell degeneration and illness progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alexianu M.E., Mohamed A.H., Smith R.G., Colom L.V., Appel S.H. (1994) Apoptotic cell death of a hybrid motoneuron cell line induced by immunoglobulins from patients with amyotrophic lateral sclerosis. J Neurochem 63(6): 2365–2368

    Article  PubMed  CAS  Google Scholar 

  • Anderson A.J., Su J.H., Cotman C.W. (1996) DNA damage and apoptosis in Alzheimer’s disease: colocalization with c-Jun immunoreactivity, relationship to brain area, and effect of postmortem delay. J Neurosci 16: 1710–1719

    PubMed  CAS  Google Scholar 

  • Anglande P, Vyas S, Javoy-Agid F (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12: 25–31

    Google Scholar 

  • Banati R.B., Daniel S.E., Blount S.B. (1998) Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson’s disease. Mov Disord 13: 221–227

    Article  PubMed  CAS  Google Scholar 

  • Bredesen D.E. (1995) Neural apoptosis. Ann Neurol 38: 839–851

    Article  PubMed  CAS  Google Scholar 

  • Brown R.H. Jr (1997) Amyotrophic lateral sclerosis. Insights from genetics. Arch Neurol 54(10): 1246–1250

    Article  PubMed  Google Scholar 

  • Butterworth N.J., Williams L, Bullock J.Y., Love D.R., Faull R.L., Dragunow M (1998) Trinucleotide (CAG) repeat length is positively correlated with the degree of DNA fragmentation in Huntington’s disease striatum. Neuroscience 87: 49–53

    Article  PubMed  CAS  Google Scholar 

  • Clutton S (1997) The importance of oxidative stress in apoptosis. Br Med Bull 53: 662–668

    Article  PubMed  CAS  Google Scholar 

  • Cohen O, Kohen R, Lavon E, Abramsky O, Steiner I (1996) Serum Cu/Zn superoxide dismutase activity is reduced in sporadic amyotrophic lateral sclerosis patients. J Neurol Sci 143(1–2): 118–120

    Google Scholar 

  • de la Monte S.M., Sohn Y.K., Wands J.R. (1997) Correlates of p53- and Fas (CD95)mediated apoptosis in Alzheimer’s disease. J Neurol Sci 152: 73–83

    Article  PubMed  Google Scholar 

  • de la Monte S.M., Sohn Y.K., Ganju N, Wands J.R. (1998) P53- and CD95-associated apoptosis in neurodegenerative diseases. Lab Invest 78: 401–411

    PubMed  Google Scholar 

  • DiFiglia M, Sapp E, Chase K.O., Davies S.W., Bates G.P., Vonsattel J.P. (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277: 1990–1993

    Article  PubMed  CAS  Google Scholar 

  • Dorandeu A, Wingertsmann L, Chretien F, Delisle M.B., Vital C, Parchi P, Montagna P, Lugaresi E, Ironside J.W., Budka H, Gambetti P, Gray F (1998) Neuronal apoptosis in fatal familial insomnia. Brain Pathol 8: 531–537

    Article  PubMed  CAS  Google Scholar 

  • Dragunow M, Faull R.L., Lawlor P, Beilharz E.J., Singleton K, Walker E.B., Mee E (1995) In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreport 6(7): 1053–1057

    Article  PubMed  CAS  Google Scholar 

  • Dragunow M, Faull R.L., Lawlor P (1996) In-situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreprot 6: 1053–10577

    Article  Google Scholar 

  • Durham H.D., Roy J, Dong L, Figlewicz D.A. (1997) Aggregation of mutant Cu/Zn superoxide dismutase proteins in a culture model of ALS. J Neuropathol Exp Neurol 56(5):523–530

    Article  PubMed  CAS  Google Scholar 

  • Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F (1993) Neurotoxicity of a prion protein fragment. Nature 362(6420): 543–546

    Article  PubMed  CAS  Google Scholar 

  • Forloni G, Bugiani O, Tagliavini F, Salmona M (1996) Apoptosis-mediated neurotoxicity induced by beta-amyloid and PrP fragments. Mol Chem Neuropathol 1–3: 163–171

    Article  Google Scholar 

  • Fraker PJ, King LE, Lill-Elghanian D, Telford WG (1995) Quantification of apoptotic events in pure and heterogeneous popUlations of cells using the flow cytometer. Meth Cell Biol 46: 57–76

    Article  CAS  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson S.A., (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119(3): 493–501

    Article  PubMed  CAS  Google Scholar 

  • Ghadge G.D., Lee J.P., Bindokas V.P., Jordan J, Ma L, Miller R.J., Roos R.P. (1997) Mutant superoxide dismutase-1-linked familial amyotrophic lateral sclerosis: molecular mechanisms of neuronal death and protection. J Neurosci 17: 8756–8766

    PubMed  CAS  Google Scholar 

  • Giese A, Groschup M.H., Hess B, Kretzschmar H.A. (1995) Neuronal cell death in scrapieinfected mice is due to apoptosis. Brain Pathol 5: 213–221

    Article  PubMed  CAS  Google Scholar 

  • Goldberg Y.P., Nicholson D.W., Rasper D.M., Kalchman M.A., Koide H.B., Graham R.K., Bromm M, Kazemi-Esfarjani P, Thornberry N.A., Vaillancourt J.P., Hayden M.R. (1996) Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nature Genet 13: 442–449

    Article  PubMed  CAS  Google Scholar 

  • Gorman A.M., McGowan A, O’Neill C, Cotter T (1996) Oxidative stress and apoptosis in neurodegeneration. J Neurol Sci 139: S45–S52

    Article  Google Scholar 

  • Gorman A.M., Orrenius S, Ceccatelli S (1998) Apoptosis in neuronal cells: role of caspases. Neuroreport 9: R49–R55

    Article  PubMed  CAS  Google Scholar 

  • Gurney M.E. (1997) Transgenic animal models of familial amyotrophic lateral sclerosis. J Neurol 244 [Suppl 2]: S15–S20

    Article  PubMed  Google Scholar 

  • Hochman A, Sternin H, Gorodin S, Korsmeyer S, Ziv I, Melamed E, Offen D (1998) Enhanced oxidative stress and altered antioxidants in brains of Bcl-2-deficient mice. J Neurochem 71: 741–748

    Article  PubMed  CAS  Google Scholar 

  • Hutchins J.B., Barger S.W. (1998) Why neurons die: cell death in the nervous system. Anat Rec 253: 79–90

    Article  PubMed  CAS  Google Scholar 

  • Irwin I, DeLanney L.E., McNeill T, Chan P, Forno L.S., Murphy G.M. Jr, Di Monte D.A., Sandy M.S., Langston J.W. (1994) Aging and the nigrostriatal dopamine system: a nonhuman primate study. Neurodegeneration 3: 251–265

    PubMed  CAS  Google Scholar 

  • Kaal E.C., Joosten E.A., Bar P.R. (1997) Prevention of apoptotic motoneuron death in-vitro by neurotrophins and muscle extract. Neurochem Int 31: 193–201

    Article  PubMed  CAS  Google Scholar 

  • Kingsbury A.E., Mardsen C.D., Foster O.J. (1998) DNA fragmentation in human substantia nigra: apoptosis or perimortem effect? Mov Disord 13(6): 877–884

    Article  PubMed  CAS  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605–608

    Article  PubMed  CAS  Google Scholar 

  • Kitamura Y, Shimohama S, Kamoshima W, Matsuoka Y, Nomura Y, Taniguchi T (1997) Changes of p53 in the brains of patients with Alzheimer’s disease. Biochem Biophys Res Commun 232: 418–421

    Article  PubMed  CAS  Google Scholar 

  • Kizaki H, Ohnishi Y, Azuma Y, Mizuno Y, Ohsaka F (1993) 1-beta-D-arabinosylcytosine and 5-azacytidine induce internucleosomal DNA fragmentation and cell death in thymocytes. Immunopharmacology. 25: 19–27

    Article  PubMed  CAS  Google Scholar 

  • Kosel S, Egensperger R, Eitzen V, Mehraein P, Graeber M.B. (1997) On the question of apoptosis in the parkinsonian substantia nigra. Acta Neuropathol (Berlin) 93: 105–108

    Article  PubMed  CAS  Google Scholar 

  • Kostic V, Jackson-Lewis V, de Bilbao F, Dubois-Dauphin M, Przedborski S (1997) Bcl- 2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 277: 559–562

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar H.A., Giese A, Brown D.R., Herms J, Keller B, Schmidt B, Groschup M (1997) Cell death in prion disease. J Neural Transm [Suppl] 50: 191–210

    Article  CAS  Google Scholar 

  • Langston W.J. (1998) Epidemiology versus genetic in genetic in Parkinson’s disease progress in resolving an age-old debate. Ann Neurol 44: S58–S62

    Google Scholar 

  • Lassmann H, Bancher C, Breitschopf H, Wegiel J, Bobinski M, Jellinger K, Wisniewski HM (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol (Berl) 89(1): 35–41

    Article  PubMed  CAS  Google Scholar 

  • Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein M.J., Jonnalagada S, Chemova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson K.D., Polymeropoulos M.H. (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395: 451–452

    Article  PubMed  CAS  Google Scholar 

  • Lo A.C., Houenou L.J., Oppenheim R.W. (1995) Apoptosis in the nervous system: morphological features, methods, pathology, and prevention. Arch Histol Cytol 58: 139–149

    Article  PubMed  CAS  Google Scholar 

  • Lucassen P.J., Williams A, Chung W.C., Fraser H (1995) Detection of apoptosis in murine scrapie. Neurosci Lett 198: 185–188

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Umegaki H, Wang X, Abe R, Roth G.S. (1998) Dopamine induces apoptosis through an oxidation-involved SAPK/JNK activation pathway. J Biol Chem 273:3756–3764

    Article  PubMed  CAS  Google Scholar 

  • MacGibbon G.A., Lawlor P.A., Sirimanne E.S., Walton M.R., Connor B, Young D, Williams C, Gluckman P, Faull R.L., Hughes P, Dragunow M (1997) Bax expression in mammalian neurons undergoing apoptosis, and in Alzheimer’s disease. Brain Res 750: 223–234

    Article  PubMed  CAS  Google Scholar 

  • MacGibbon G.A., Lawlor P.A., Walton M, Sirimanne E, Faull R.L., Synek B, Mee E, Connor B, Dragunow M (1997) Expression of Fos, Jun, and Krox family proteins in Alzheimer’s disease. Exp Neurol 147: 316–332

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Raber J, Alford M, Mallory M, Mattson M.P., Yang D, Wong D, Mucke L (1998) Amyloid protein precursor stimulates excitatory amino acid transport. Implications for roles in neuroprotection and pathogenesis. J Biol Chem 273(20): 12548–12554

    Article  PubMed  CAS  Google Scholar 

  • McGeer P.L., Kawamata T, McGeer E.G. (1998) Localization and possible functions of presenilins in brain. Rev Neurosci 9: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki H, Goto K, Mori H, Mizuno Y (1996) Histology detection of apoptosis in Parkinson’s disease. J Neurol Sci 137: 120–123

    Article  PubMed  CAS  Google Scholar 

  • Mu X, He J, Anderson D.W., Trojanowski J.Q., Springer J.E. (1996) Altered expression of bcl-2 and bax mRNA in amyotrophic lateral sclerosis spinal cord motor neurons. Ann Neurol 40(3): 379–386

    Article  PubMed  CAS  Google Scholar 

  • Nicholas W.W. (1998) Genetic risk in Parkinson’s disease. Ann Neurol 44: S58–S62

    Google Scholar 

  • Nishimoto I (1998) A new paradigm for neurotoxicity by FAD mutants of betaAPP: a signaling abnormality. Neurobiol Aging 19: S33–S38

    Article  PubMed  CAS  Google Scholar 

  • Offen D, Ziv I, Gorodin S, Barzilai A, Malik Z, Melamed E (1995) Dopamine-induced programmed cell death in mouse thymocytes. Biochim Biophys Acta 1268: 171–177

    Article  PubMed  Google Scholar 

  • Offen D, Ziv I, Sternin H, Melamed E, Hochman A (1996) Prevention of dopamine-induced cell death by thiol antioxidants: possible implications for treatment of Parkinson’s disease. Exp Neurol 41: 32–39

    Article  Google Scholar 

  • Offen D, Ziv I, Panet H, Wasserman L, Stein R, Melamed E, Barzilai A (1997a) Dopamine-induced apoptosis is inhibited in PC12 cells expressing Bcl-2. Cell Mol Neurobiol 17: 289–304

    Article  PubMed  CAS  Google Scholar 

  • Offen D, Ziv I, Barzilai A, Gorodin S, Glater E, Hochman A, Melamed E (1997b) Dopamine-melanin induces apoptosis in PC12 cells; possible implications for the etiology of Parkinson’s disease. Neurochem Int 31: 207–216

    Article  PubMed  CAS  Google Scholar 

  • Offen D, Beart P.M., Cheung N.S., Pascoe C.J., Hochman A, Gorodin S, Melamed E, Bernard R, Bernard O (1998) Transgenic mice expressing human Bcl-2 in their neurons are resistant to 6-hydroxydopamine and I-methyl-4-phenyl-1,2,3,6- tetrahydropyridine neurotoxicity. Proc Natl Acad Sci USA 95: 5789–5794

    Article  PubMed  CAS  Google Scholar 

  • Ookohchi T, Ito H, Serikawa T, Sato K (1997) Detection of apoptosis in the brain of the zitter rat with genetic spongiform encephalopathy. Biochem Mol Biol Int 41: 279–284

    PubMed  CAS  Google Scholar 

  • Orrell R.W., Habgood J.J., Gardiner I, King A.W., Bowe F.A., Hallewell R.A., Marklund S.L., Greenwood J, Lane R.J., deBelleroche J (1997) Clinical and functional investigation of 10 missense mutations and a novel frameshift insertion mutation of the gene for copper-1zinc superoxide dismutase in UK families with amyotrophic lateral sclerosis. Neurology 48: 746–751

    Article  PubMed  CAS  Google Scholar 

  • Poirier J, Sevigny P (1998) Apolipoprotein E4, cholinergic integrity and the pharmacogenetics of Alzheimer’s disease. J Neural Transm [Suppl] 53: 199–207

    Article  CAS  Google Scholar 

  • Polymeropoulos M.H., Lavedan C, Leroy E, Ide S.E., Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos E.S., Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson W.G., Lazzarini A.M., Duvoisin R.C., Di Iorio G, Golbe L.I., Nussbaum R.L. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045–2047

    Article  PubMed  CAS  Google Scholar 

  • Portera-Cailliau C, Hedreen J.C., Price D.L., Koliatsos V.E. (1995) Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J Neurosci 15: 3775–3787

    PubMed  CAS  Google Scholar 

  • Prusiner S.B. (1998) The prion diseases. Brain Pathol 8(3): 499–513

    CAS  Google Scholar 

  • Rabizadeh S, Gralla E.B., Borchelt D.R., Gwinn R, Valentine J.S., Sisodia S, Wong P, Lee M, Hahn H, Bredesen D.E. (1995) Mutations associated with amyotrophic lateral sclerosis convert superoxide dismutase from an anti-apoptotic gene to a pro-apoptotic gene: studies in yeast and neural cells. Proc Natl Acad Sci USA 92(7): 3024–3028

    Article  PubMed  CAS  Google Scholar 

  • Renbaum P, Levy-Lahad E (1998) Monogenic determinants of familial Alzheimer’s disease: presenilin-2 mutations. Cell Mol Life Sci 54: 910–919

    Article  PubMed  CAS  Google Scholar 

  • Saudou F, Finkbeiner S, Devys D, Greenberg M.E. (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95: 55–66

    Article  PubMed  CAS  Google Scholar 

  • Sendtner M, Dittrich F, Hughes R.A. (1994) Actions of CNTF and neurotrophins on degenerating motor neurons: preclinical studies and clinical implications. J Neurol Sci 124: 77–83

    Article  PubMed  CAS  Google Scholar 

  • Simantov R, Blinder E, Ratovitski T, Tauber M, Gabbay M, Porat S (1996) Dopamineinduced apoptosis in human neuronal cells: inhibition by nucleic acids antisense to the dopamine transporter. Neuroscience 74: 39–50

    Article  PubMed  CAS  Google Scholar 

  • Simonian N.A., Coyle (1997) Oxidative stress in neurodegenerative disease Annu Pharmacol Toxicol 36: 83–106

    Google Scholar 

  • Small G.W. (1998) The pathogenesis of Alzheimer’s disease. J Clin Psychiatry 59: S7–S14

    Google Scholar 

  • Takai N, Nakanishi H, Tanabe K, Nishioku T, Sugiyama T, Fujiwara M, Yamamoto K (1998) Involvement of caspase-like pin apoptosis of neuronal PC12 cells and primary cultured microglia induced by 6-hydroxydopamine. J Neurosci Res 54: 214–222

    Article  PubMed  CAS  Google Scholar 

  • Tatton N.A., Maclean-Fraser A, Tatton W.G., Perl D.P., Olanow C.W. (1998) A fluorescent double-labeling method to detect and confirm apoptotic nuclei in Parkinson’s disease. Ann Neurol 44: S142–S148

    PubMed  CAS  Google Scholar 

  • Tews DS, Goebel H.H., Meinck H.M. (1997) DNA-fragmentation and apoptosis-related proteins of muscle cells in motor neuron disorders. Acta Neurol Scand 96: 380–386

    Article  PubMed  CAS  Google Scholar 

  • Thomas L.B., Gates D.J., Richfield E.K., O’Brien T.F., Schweitzer JB, Steindler D.A. (1995) DNA end labeling (TUNEL) in Huntington’s disease and other neuropathological conditions. Exp Neurol 133: 265–272

    Article  PubMed  CAS  Google Scholar 

  • Troost D, Aten J, Morsink F, de-Jong J.M. (1995) Apoptosis in amyotrophic lateral sclerosis is not restricted to motor neurons. Bcl-2 expression is increased in unaffected post-central gyrus. Neuropathol Appl Neurobiol 21: 498–504

    Google Scholar 

  • Vechio J.D., Bruijn L.I., Xu Z, Brown R.H. Jr, Cleveland D.W. (1996) Sequence variants in human neurofilament proteins: absence of linkage to familial amyotrophic lateral sclerosis. Ann Neurol 40(4): 603–610

    Article  PubMed  CAS  Google Scholar 

  • Wellington C.L., Brinkman R.R., O’Kusky JR, Hayden M.R. (1997) Toward understanding the molecular pathology of Huntington’s disease. Brain Pathol 7: 979–1002

    Article  PubMed  CAS  Google Scholar 

  • Wellington C.L., Ellerby L.M., Hackam A.S., Margolis R.L., Trifiro M.A., Singaraja R, McCutcheon K, Salvesen G.S., Propp S.S., Bromm M, Rowland K.J., Zhang T, Rasper D, Roy S, Thornberry N, Pinsky L, Kakizuka A, Ross C.A., Nicholson D.W., Bredesen D.E., Hayden M.R. (1998) Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J Biol Chem 273: 9158–9167

    Article  PubMed  CAS  Google Scholar 

  • Wiedau-Pazos M, Goto J.J., Rabizadeh S, Gralla E.B., Roe J.A., Lee M.K., Valentine J.S., Bredesen D.E. (1996) Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271: 515–518

    Article  PubMed  CAS  Google Scholar 

  • Williams A, Lucassen P.J., Ritchie D, Bruce M (1997) PrP deposition, microglial activation, and neuronal apoptosis in murine scrapie. Exp Neurol 144(2): 433–438

    Article  PubMed  CAS  Google Scholar 

  • Wyllie A.H., Kerr J.F.R., Currie A.R. (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68: 251–306

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Sun X, Beech W, Teter B, Wu S, Sigel J, Vinters H.V., Frautschy S.A., Cole G.M. (1998a) Antibody to caspase-cleaved actin detects apoptosis in differentiated neuroblastoma and plaque-associated neurons and microglia in Alzheimer’s disease. Am J Pathol 152: 379–389

    PubMed  CAS  Google Scholar 

  • Yang L, Matthews R.T., Schulz J.B., Klockgether T, Liao A.W., Martinou J.C., Penney JB Jr, Hyman B.T., Beal M.F. (1998b) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyride neurotoxicity is attenuated in mice overexpressing bcl-2. J Neurosci 18: 8145–8152

    PubMed  CAS  Google Scholar 

  • Yoshiyama Y, Yamada T, Asanuma K, Asahi T (1994) Apoptosis related antigen, Le(Y) and nick-end labeling are positive in spinal motor neurons in amyotrophic lateral sclerosis. Acta Neuropathol (Berl) 88: 207–211

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Price J.O., Graham D.G., Montine T.J. (1998) Secondary excitotoxicity contributes to dopamine-induced apoptosis of dopaminergic neuronal cultures.Biochem Biophys Res Commun 248: 812–816

    Article  PubMed  CAS  Google Scholar 

  • Ziv I, Melamed E, Nardi N, Luria D, Achiron A, Offen D, Barzilai A (1994) Dopamine induces apoptosis-like cell death in cultured chick sympathetic neurons-a possible novel pathogenic mechanism in Parkinson’s disease. Neurosci Lett 170: 136–140

    Article  PubMed  CAS  Google Scholar 

  • Ziv I, Barzilai A, Offen D, Nardi N, Melamed E (1997) Nigrostriatal neuronal death in Parkinson’s disease: a passive or an active genetically-controlled process? J Neural Transm [Suppl] 49: S69–S76

    Google Scholar 

  • Ziv I, Offen D, Barzilai A, Haviv R, Stein R, Zilkha-Falb Z.R., Shirvan A, Melamed E (1997) Modulation of control mechanisms of dopamine-induced apoptosis-a future approach to the treatment of Parkinson’s disease? J Neural Transm [Suppl] 49: S195–S202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Wien

About this paper

Cite this paper

Offen, D., Elkon, H., Melamed, E. (2000). Apoptosis as a general cell death pathway in neurodegenerative diseases. In: Mizuno, Y., Calne, D.B., Horowski, R., Poewe, W., Riederer, P., Youdim, M.B.H. (eds) Advances in Research on Neurodegeneration. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6284-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6284-2_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7246-9

  • Online ISBN: 978-3-7091-6284-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics