Skip to main content

Cell Death Mechanisms of Neurodegeneration

  • Chapter
  • First Online:
Neurodegenerative Diseases

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 15))

Abstract

There are common mechanisms shared by genetically or pathologically distinct neurodegenerative diseases, such as excitotoxicity, mitochondrial deficits and oxidative stress, protein misfolding and translational dysfunction, autophagy and microglia activation. This indicates that although the original cause may differ in individual diseases or even subtypes of certain disorders, these disrupted common cell functions and signaling, together with aging, may lead to final execution of cell death through similar pathways. The variable neurodegenerative disease symptoms are probably caused by the type, location, and connection of the cell populations that suffer from dysfunction and loss. Besides apoptosis, necroptosis, and autophagy, an important form of death termed parthanatos plays a prominent role in stroke and several neurodegenerative diseases, which is due to PARP-1 overactivation, PAR accumulation, nuclear translocation of the mitochondria protein AIF, and large-scale DNA cleavage. Understanding the mechanisms and interactions of cell death signaling will not only help to develop neuroprotective strategies to halt neurodegeneration, but also provide biomarkers for monitoring disease progression and recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-MA:

3-Methyladenine

6-OHDA:

6-Hydroxydopamine

Aβ:

β-Amyloid peptide

AD:

Alzheimer’s disease

AIF:

Apoptosis-inducing factor

AIMP2:

Aminoacyl-tRNA synthetase complex interacting multifunctional protein-2

ALS:

Amyotrophic lateral sclerosis

AMPK:

AMP-activated protein kinase

APP:

Amyloid precursor protein

ARH3:

ADP-ribosylhydrolase 3

BRCT:

BRCA1 C-terminal

CNS:

Central nervous system

DPQ:

3,4-Dihydro-5-(4-(1-piperidinyl)butoxyl)-1(2H)-isoquinolinone

HD:

Huntington’s disease

IFNγ:

Interferon gamma

KO:

Knock out

LPS:

Lipopolysaccharide

MCAO:

Middle cerebral artery occlusion

MNNG:

N-Methyl-N′-nitro-N-nitrosoguanidine

MPP+:

1-Methyl-4-phenylpyridinium

MPT:

Mitochondrial permeability transition

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MS:

Multiple sclerosis

mTOR:

Mechanistic target of rapamycin

NAD+:

Oxidized nicotinamide adenine dinucleotide

Nec-1:

Necrostatin-1

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NLS:

Nuclear localization sequence

NMDA:

N-Methyl-d-aspartate

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

OGD:

Oxygen glucose deprivation

P53:

Tumor protein 53

PAAN:

Parthanatos-dependent AIF-associated nuclease

PAR:

Poly(ADP-ribose)

PARP1:

Poly(ADP-ribose) polymerase 1

PARG:

Poly(ADP-ribose) glycohydrolase

PBM:

PAR-binding motif

PBZF:

PAR-binding zinc finger

PD:

Parkinson’s disease

PI3K:

Phosphoinositide3-kinase

PSM:

PARP signature motif

ROS:

Reactive oxygen species

siRNA:

Small interfering RNA

SOD1:

Superoxide dismutase 1

TH:

Tyrosine-hydroxylase

TNF:

Tumor necrosis factor

TNFR1:

TNFα receptor 1

RIPK1:

Receptor-interacting protein kinase 1

RIPK3:

Receptor-interacting protein kinase 3

Z-VAD-fmk:

N-Benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone

References

  1. Bredesen DE, Rao RV, Mehlen P (2006) Cell death in the nervous system. Nature 443(7113):796–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1(2):120–129

    Article  CAS  PubMed  Google Scholar 

  3. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV et al (2012) Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ 19(1):107–120

    Article  CAS  PubMed  Google Scholar 

  4. Nijhawan D, Honarpour N, Wang X (2000) Apoptosis in neural development and disease. Annu Rev Neurosci 23:73–87

    Article  CAS  PubMed  Google Scholar 

  5. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15(2):135–147

    Article  CAS  Google Scholar 

  6. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119

    Article  CAS  PubMed  Google Scholar 

  7. Schulze-Osthoff K, Bakker AC, Vanhaesebroeck B, Beyaert R, Jacob WA, Fiers W (1992) Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J Biol Chem 267(8):5317–5323

    CAS  PubMed  Google Scholar 

  8. Re DB, Le Verche V, Yu C, Amoroso MW, Politi KA, Phani S et al (2014) Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 81(5):1001–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu S, Zhang Y, Bai G, Li H (2011) Necrostatin-1 ameliorates symptoms in R6/2 transgenic mouse model of Huntington's disease. Cell Death Dis 2:e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ofengeim D, Ito Y, Najafov A, Zhang Y, Shan B, DeWitt JP et al (2015) Activation of necroptosis in multiple sclerosis. Cell Rep 10(11):1836–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Menzies FM, Fleming A, Rubinsztein DC (2015) Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 16(6):345–357

    Article  CAS  PubMed  Google Scholar 

  12. Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19(8):983–997

    Article  CAS  PubMed  Google Scholar 

  13. Harris H, Rubinsztein DC (2012) Control of autophagy as a therapy for neurodegenerative disease. Nat Rev Neurol 8(2):108–117

    Article  CAS  Google Scholar 

  14. Fatokun AA, Dawson VL, Dawson TM (2014) Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol 171(8):2000–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. David KK, Andrabi SA, Dawson TM, Dawson VL (2009) Parthanatos, a messenger of death. Front Biosci 14:1116–1128

    Article  CAS  Google Scholar 

  16. Andrabi SA, Dawson TM, Dawson VL (2008) Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann N Y Acad Sci 1147:233–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Y, Dawson VL, Dawson TM (2009) Poly(ADP-ribose) signals to mitochondrial AIF: a key event in parthanatos. Exp Neurol 218(2):193–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci U S A 88(14):6368–6371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dawson VL, Dawson TM, Bartley DA, Uhl GR, Snyder SH (1993) Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci Off J Soc Neurosci 13(6):2651–2661

    CAS  Google Scholar 

  20. Dawson VL, Dawson TM (1998) Nitric oxide in neurodegeneration. Prog Brain Res 118:215–229

    Article  CAS  PubMed  Google Scholar 

  21. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265(5180):1883–1885

    Article  CAS  PubMed  Google Scholar 

  22. Schulz JB, Matthews RT, Muqit MM, Browne SE, Beal MF (1995) Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J Neurochem 64(2):936–939

    Article  CAS  PubMed  Google Scholar 

  23. Ayata C, Ayata G, Hara H, Matthews RT, Beal MF, Ferrante RJ et al (1997) Mechanisms of reduced striatal NMDA excitotoxicity in type I nitric oxide synthase knock-out mice. J Neurosci Off J Soc Neurosci 17(18):6908–6917

    CAS  Google Scholar 

  24. Zhang J, Dawson VL, Dawson TM, Snyder SH (1994) Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263(5147):687–689

    Article  CAS  PubMed  Google Scholar 

  25. Xia Y, Dawson VL, Dawson TM, Snyder SH, Zweier JL (1996) Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc Natl Acad Sci U S A 93(13):6770–6774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gonzalez-Zulueta M, Ensz LM, Mukhina G, Lebovitz RM, Zwacka RM, Engelhardt JF et al (1998) Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. J Neurosci Off J Soc Neurosci 18(6):2040–2055

    CAS  Google Scholar 

  27. Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL (2013) Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 698(1–3):6–18

    Article  CAS  PubMed  Google Scholar 

  28. Mattson MP (2003) Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. NeuroMolecular Med 3(2):65–94

    Article  CAS  PubMed  Google Scholar 

  29. Ikonomidou C, Turski L (1995) Excitotoxicity and neurodegenerative diseases. Curr Opin Neurol 8(6):487–497

    Article  CAS  PubMed  Google Scholar 

  30. Fossati S, Cipriani G, Moroni F, Chiarugi A (2007) Neither energy collapse nor transcription underlie in vitro neurotoxicity of poly(ADP-ribose) polymerase hyper-activation. Neurochem Int 50(1):203–210

    Article  CAS  PubMed  Google Scholar 

  31. Goto S, Xue R, Sugo N, Sawada M, Blizzard KK, Poitras MF et al (2002) Poly(ADP-ribose) polymerase impairs early and long-term experimental stroke recovery. Stroke 33(4):1101–1106

    Article  CAS  PubMed  Google Scholar 

  32. Andrabi SA, Kim NS, Yu SW, Wang H, Koh DW, Sasaki M et al (2006) Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci U S A 103(48):18308–18313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu SW, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM et al (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci U S A 103(48):18314–18319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ et al (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297(5579):259–263

    Article  CAS  PubMed  Google Scholar 

  35. D'Amours D, Desnoyers S, D'Silva I, Poirier GG (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342(Pt 2):249–268

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hong SJ, Dawson TM, Dawson VL (2004) Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol Sci 25(5):259–264

    Article  CAS  PubMed  Google Scholar 

  37. Luo X, Kraus WL (2012) On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 26(5):417–432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ji Y, Tulin AV (2010) The roles of PARP1 in gene control and cell differentiation. Curr Opin Genet Dev 20(5):512–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kraus WL (2008) Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol 20(3):294–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kraus WL, Lis JT (2003) PARP goes transcription. Cell 113(6):677–683

    Article  CAS  PubMed  Google Scholar 

  41. Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7(7):517–528

    Article  CAS  PubMed  Google Scholar 

  42. Alvarez-Gonzalez R, Jacobson MK (1987) Characterization of polymers of adenosine diphosphate ribose generated in vitro and in vivo. Biochemistry 26(11):3218–3224

    Article  CAS  PubMed  Google Scholar 

  43. Rouleau M, Aubin RA, Poirier GG (2004) Poly(ADP-ribosyl)ated chromatin domains: access granted. J Cell Sci 117(Pt 6):815–825

    Article  CAS  PubMed  Google Scholar 

  44. Li M, Lu LY, Yang CY, Wang S, Yu X (2013) The FHA and BRCT domains recognize ADP-ribosylation during DNA damage response. Genes Dev 27(16):1752–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hassa PO, Hottiger MO (2008) The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci 13:3046–3082

    Article  CAS  PubMed  Google Scholar 

  46. Gagne JP, Hendzel MJ, Droit A, Poirier GG (2006) The expanding role of poly(ADP-ribose) metabolism: current challenges and new perspectives. Curr Opin Cell Biol 18(2):145–151

    Article  CAS  PubMed  Google Scholar 

  47. Kim MY, Zhang T, Kraus WL (2005) Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev 19(17):1951–1967

    Article  CAS  PubMed  Google Scholar 

  48. Koh DW, Dawson TM, Dawson VL (2005) Poly(ADP-ribosyl)ation regulation of life and death in the nervous system. Cell Mol Life Sci 62(7–8):760–768

    Article  CAS  PubMed  Google Scholar 

  49. Meyer RG, Meyer-Ficca ML, Whatcott CJ, Jacobson EL, Jacobson MK (2007) Two small enzyme isoforms mediate mammalian mitochondrial poly(ADP-ribose) glycohydrolase (PARG) activity. Exp Cell Res 313(13):2920–2936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Meyer-Ficca ML, Meyer RG, Coyle DL, Jacobson EL, Jacobson MK (2004) Human poly(ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments. Exp Cell Res 297(2):521–532

    Article  CAS  PubMed  Google Scholar 

  51. Blenn C, Althaus FR, Malanga M (2006) Poly(ADP-ribose) glycohydrolase silencing protects against H2O2-induced cell death. Biochem J 396(3):419–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cozzi A, Cipriani G, Fossati S, Faraco G, Formentini L, Min W et al (2006) Poly(ADP-ribose) accumulation and enhancement of postischemic brain damage in 110-kDa poly(ADP-ribose) glycohydrolase null mice. J Cereb Blood Flow Metab 26(5):684–695

    Article  CAS  PubMed  Google Scholar 

  53. Koh DW, Lawler AM, Poitras MF, Sasaki M, Wattler S, Nehls MC et al (2004) Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. Proc Natl Acad Sci U S A 101(51):17699–17704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hanai S, Kanai M, Ohashi S, Okamoto K, Yamada M, Takahashi H et al (2004) Loss of poly(ADP-ribose) glycohydrolase causes progressive neurodegeneration in Drosophila melanogaster. Proc Natl Acad Sci U S A 101(1):82–86

    Article  CAS  PubMed  Google Scholar 

  55. Zhou Y, Feng X, Koh DW (2011) Activation of cell death mediated by apoptosis-inducing factor due to the absence of poly(ADP-ribose) glycohydrolase. Biochemistry 50(14):2850–2859

    Article  CAS  PubMed  Google Scholar 

  56. Krishnakumar R, Kraus WL (2010) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 39(1):8–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Krantic S, Mechawar N, Reix S, Quirion R (2007) Apoptosis-inducing factor: a matter of neuron life and death. Prog Neurobiol 81(3):179–196

    Article  CAS  PubMed  Google Scholar 

  58. Modjtahedi N, Giordanetto F, Madeo F, Kroemer G (2006) Apoptosis-inducing factor: vital and lethal. Trends Cell Biol 16(5):264–272

    Article  CAS  PubMed  Google Scholar 

  59. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397(6718):441–446

    Article  CAS  PubMed  Google Scholar 

  60. Cheung EC, Melanson-Drapeau L, Cregan SP, Vanderluit JL, Ferguson KL, McIntosh WC et al (2005) Apoptosis-inducing factor is a key factor in neuronal cell death propagated by BAX-dependent and BAX-independent mechanisms. J Neurosci Off J Soc Neurosci 25(6):1324–1334

    Article  CAS  Google Scholar 

  61. Culmsee C, Zhu C, Landshamer S, Becattini B, Wagner E, Pellecchia M et al (2005) Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and Bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. J Neurosci Off J Soc Neurosci 25(44):10262–10272

    Article  CAS  Google Scholar 

  62. Cregan SP, Dawson VL, Slack RS (2004) Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23(16):2785–2796

    Article  CAS  PubMed  Google Scholar 

  63. Yu SW, Wang Y, Frydenlund DS, Ottersen OP, Dawson VL, Dawson TM (2009) Outer mitochondrial membrane localization of apoptosis-inducing factor: mechanistic implications for release. ASN Neuro 1(5):e00021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Arnoult D, Parone P, Martinou JC, Antonsson B, Estaquier J, Ameisen JC (2002) Mitochondrial release of apoptosis-inducing factor occurs downstream of cytochrome c release in response to several proapoptotic stimuli. J Cell Biol 159(6):923–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N et al (2000) Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J 14(5):729–739

    CAS  PubMed  Google Scholar 

  66. Gagne JP, Isabelle M, Lo KS, Bourassa S, Hendzel MJ, Dawson VL et al (2008) Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res 36(22):6959–6976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang Y, Kim NS, Haince JF, Kang HC, David KK, Andrabi SA et al (2011) Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci Signal 4(167):ra20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Dawson VL, Dawson TM (2004) Deadly conversations: nuclear-mitochondrial cross-talk. J Bioenerg Biomembr 36(4):287–294

    Article  CAS  PubMed  Google Scholar 

  69. Wang H, Shimoji M, Yu SW, Dawson TM, Dawson VL (2003) Apoptosis inducing factor and PARP-mediated injury in the MPTP mouse model of Parkinson's disease. Ann N Y Acad Sci 991:132–139

    Article  CAS  PubMed  Google Scholar 

  70. DaRosa PA, Wang Z, Jiang X, Pruneda JN, Cong F, Klevit RE et al (2015) Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal. Nature 517(7533):223–226

    Article  CAS  PubMed  Google Scholar 

  71. Kang HC, Lee YI, Shin JH, Andrabi SA, Chi Z, Gagne JP et al (2011) Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. Proc Natl Acad Sci U S A 108(34):14103–14108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Andrabi SA, Kang HC, Haince JF, Lee YI, Zhang J, Chi Z et al (2011) Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death. Nat Med 17(6):692–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Eliasson MJ, Sampei K, Mandir AS, Hurn PD, Traystman RJ, Bao J et al (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3(10):1089–1095

    Article  CAS  PubMed  Google Scholar 

  74. LaPlaca MC, Zhang J, Raghupathi R, Li JH, Smith F, Bareyre FM et al (2001) Pharmacologic inhibition of poly(ADP-ribose) polymerase is neuroprotective following traumatic brain injury in rats. J Neurotrauma 18(4):369–376

    Article  CAS  PubMed  Google Scholar 

  75. Maier C, Scheuerle A, Hauser B, Schelzig H, Szabo C, Radermacher P et al (2007) The selective poly(ADP)ribose-polymerase 1 inhibitor INO1001 reduces spinal cord injury during porcine aortic cross-clamping-induced ischemia/reperfusion injury. Intensive Care Med 33(5):845–850

    Article  CAS  PubMed  Google Scholar 

  76. Kauppinen TM, Suh SW, Higashi Y, Berman AE, Escartin C, Won SJ et al (2011) Poly(ADP-ribose)polymerase-1 modulates microglial responses to amyloid beta. J Neuroinflammation 8:152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Love S, Barber R, Wilcock GK (1999) Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer's disease. Brain 122(Pt 2):247–253

    Article  PubMed  Google Scholar 

  78. Turunc Bayrakdar E, Uyanikgil Y, Kanit L, Koylu E, Yalcin A (2014) Nicotinamide treatment reduces the levels of oxidative stress, apoptosis, and PARP-1 activity in Abeta(1-42)-induced rat model of Alzheimer's disease. Free Radic Res 48(2):146–158

    Article  CAS  PubMed  Google Scholar 

  79. Martire S, Fuso A, Rotili D, Tempera I, Giordano C, De Zottis I et al (2013) PARP-1 modulates amyloid beta peptide-induced neuronal damage. PLoS One 8(9):e72169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Infante J, Sanchez-Juan P, Mateo I, Rodriguez-Rodriguez E, Sanchez-Quintana C, Llorca J et al (2007) Poly (ADP-ribose) polymerase-1 (PARP-1) genetic variants are protective against Parkinson’s disease. J Neurol Sci 256(1–2):68–70

    Article  CAS  PubMed  Google Scholar 

  81. Kim TW, Cho HM, Choi SY, Suguira Y, Hayasaka T, Setou M et al (2013) (ADP-ribose) polymerase 1 and AMP-activated protein kinase mediate progressive dopaminergic neuronal degeneration in a mouse model of Parkinson’s disease. Cell Death Dis 4:e919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee Y, Karuppagounder SS, Shin JH, Lee YI, Ko HS, Swing D et al (2013) Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss. Nat Neurosci 16(10):1392–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mandir AS, Przedborski S, Jackson-Lewis V, Wang ZQ, Simbulan-Rosenthal CM, Smulson ME et al (1999) Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc Natl Acad Sci U S A 96(10):5774–5779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Outeiro TF, Grammatopoulos TN, Altmann S, Amore A, Standaert DG, Hyman BT et al (2007) Pharmacological inhibition of PARP-1 reduces alpha-synuclein- and MPP+-induced cytotoxicity in Parkinson's disease in vitro models. Biochem Biophys Res Commun 357(3):596–602

    Article  CAS  PubMed  Google Scholar 

  85. Vis JC, Schipper E, de Boer-van Huizen RT, Verbeek MM, de Waal RM, Wesseling P et al (2005) Expression pattern of apoptosis-related markers in Huntington’s disease. Acta Neuropathol 109(3):321–328

    Article  CAS  PubMed  Google Scholar 

  86. Kauppinen TM, Suh SW, Genain CP, Swanson RA (2005) Poly(ADP-ribose) polymerase-1 activation in a primate model of multiple sclerosis. J Neurosci Res 81(2):190–198

    Article  CAS  PubMed  Google Scholar 

  87. Kim SH, Engelhardt JI, Henkel JS, Siklos L, Soos J, Goodman C et al (2004) Widespread increased expression of the DNA repair enzyme PARP in brain in ALS. Neurology 62(2):319–322

    Article  CAS  PubMed  Google Scholar 

  88. Kim SH, Henkel JS, Beers DR, Sengun IS, Simpson EP, Goodman JC et al (2003) PARP expression is increased in astrocytes but decreased in motor neurons in the spinal cord of sporadic ALS patients. J Neuropathol Exp Neurol 62(1):88–103

    Article  CAS  PubMed  Google Scholar 

  89. Martire S, Mosca L, d'Erme M (2015) PARP-1 involvement in neurodegeneration: a focus on Alzheimer’s and Parkinson’s diseases. Mech Ageing Dev 146-148:53–64

    Article  CAS  PubMed  Google Scholar 

  90. Mandir AS, Poitras MF, Berliner AR, Herring WJ, Guastella DB, Feldman A et al (2000) NMDA but not non-NMDA excitotoxicity is mediated by poly(ADP-ribose) polymerase. J Neurosci Off J Soc Neurosci 20(21):8005–8011

    CAS  Google Scholar 

  91. Pieper AA, Verma A, Zhang J, Snyder SH (1999) Poly (ADP-ribose) polymerase, nitric oxide and cell death. Trends Pharmacol Sci 20(4):171–181

    Article  CAS  PubMed  Google Scholar 

  92. Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA (1997) Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J Cereb Blood Flow Metab 17(11):1143–1151

    Article  CAS  PubMed  Google Scholar 

  93. Cardinale A, Paldino E, Giampa C, Bernardi G, Fusco FR (2015) PARP-1 inhibition is Neuroprotective in the R6/2 mouse model of Huntington's disease. PLoS One 10(8):e0134482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Yokoyama H, Yano R, Kuroiwa H, Tsukada T, Uchida H, Kato H et al (2010) Therapeutic effect of a novel anti-parkinsonian agent zonisamide against MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxicity in mice. Metab Brain Dis 25(2):135–143

    Article  CAS  PubMed  Google Scholar 

  95. Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28:57–87

    Article  CAS  PubMed  Google Scholar 

  96. Cosi C, Colpaert F, Koek W, Degryse A, Marien M (1996) Poly(ADP-ribose) polymerase inhibitors protect against MPTP-induced depletions of striatal dopamine and cortical noradrenaline in C57B1/6 mice. Brain Res 729(2):264–269

    CAS  PubMed  Google Scholar 

  97. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608

    Article  CAS  PubMed  Google Scholar 

  98. Corti O, Hampe C, Koutnikova H, Darios F, Jacquier S, Prigent A et al (2003) The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate: linking protein biosynthesis and neurodegeneration. Hum Mol Genet 12(12):1427–1437

    Article  CAS  PubMed  Google Scholar 

  99. Ko HS, von Coelln R, Sriram SR, Kim SW, Chung KK, Pletnikova O et al (2005) Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J Neurosci Off J Soc Neurosci 25(35):7968–7978

    Article  CAS  Google Scholar 

  100. O'Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34:185–204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Abeti R, Abramov AY, Duchen MR (2011) Beta-amyloid activates PARP causing astrocytic metabolic failure and neuronal death. Brain 134(Pt 6):1658–1672

    Article  PubMed  Google Scholar 

  102. Walker FO (2007) Huntington's disease. Lancet 369(9557):218–228

    Article  CAS  PubMed  Google Scholar 

  103. Graziani G, Szabo C (2005) Clinical perspectives of PARP inhibitors. Pharmacol Res 52(1):109–118

    Article  CAS  PubMed  Google Scholar 

  104. Liou AK, Zhou Z, Pei W, Lim TM, Yin XM, Chen J (2005) BimEL up-regulation potentiates AIF translocation and cell death in response to MPTP. FASEB J 19(10):1350–1352

    CAS  PubMed  Google Scholar 

  105. Chee JL, Guan XL, Lee JY, Dong B, Leong SM, Ong EH et al (2005) Compensatory caspase activation in MPP+-induced cell death in dopaminergic neurons. Cell Mol Life Sci 62(2):227–238

    Article  CAS  PubMed  Google Scholar 

  106. Chu CT, Zhu JH, Cao G, Signore A, Wang S, Chen J (2005) Apoptosis inducing factor mediates caspase-independent 1-methyl-4-phenylpyridinium toxicity in dopaminergic cells. J Neurochem 94(6):1685–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Burguillos MA, Hajji N, Englund E, Persson A, Cenci AM, Machado A et al (2011) Apoptosis-inducing factor mediates dopaminergic cell death in response to LPS-induced inflammatory stimulus: evidence in Parkinson’s disease patients. Neurobiol Dis 41(1):177–188

    Article  CAS  PubMed  Google Scholar 

  108. Adamczyk A, Czapski GA, Jesko H, Strosznajder RP (2005) Non A beta component of Alzheimer’s disease amyloid and amyloid beta peptides evoked poly(ADP-ribose) polymerase-dependent release of apoptosis-inducing factor from rat brain mitochondria. J Physiol Pharmacol 56(Suppl 2):5–13

    PubMed  Google Scholar 

  109. Paquet-Durand F, Silva J, Talukdar T, Johnson LE, Azadi S, van Veen T et al (2007) Excessive activation of poly(ADP-ribose) polymerase contributes to inherited photoreceptor degeneration in the retinal degeneration 1 mouse. J Neurosci Off J Soc Neurosci 27(38):10311–10319

    Article  CAS  Google Scholar 

  110. Sanges D, Comitato A, Tammaro R, Marigo V (2006) Apoptosis in retinal degeneration involves cross-talk between apoptosis-inducing factor (AIF) and caspase-12 and is blocked by calpain inhibitors. Proc Natl Acad Sci U S A 103(46):17366–17371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Oh YK, Shin KS, Kang SJ (2006) AIF translocates to the nucleus in the spinal motor neurons in a mouse model of ALS. Neurosci Lett 406(3):205–210

    Article  CAS  PubMed  Google Scholar 

  112. El Ghouzzi V, Csaba Z, Olivier P, Lelouvier B, Schwendimann L, Dournaud P et al (2007) Apoptosis-inducing factor deficiency induces early mitochondrial degeneration in brain followed by progressive multifocal neuropathology. J Neuropathol Exp Neurol 66(9):838–847

    Article  PubMed  Google Scholar 

  113. Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN et al (2002) The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 419(6905):367–374

    Article  CAS  PubMed  Google Scholar 

  114. Lorenzo HK, Susin SA (2007) Therapeutic potential of AIF-mediated caspase-independent programmed cell death. Drug Resist Updat 10(6):235–255

    Article  CAS  PubMed  Google Scholar 

  115. von Rotz RC, Kins S, Hipfel R, von der Kammer H, Nitsch RM (2005) The novel cytosolic RING finger protein dactylidin is up-regulated in brains of patients with Alzheimer’s disease. Eur J Neurosci 21(5):1289–1298

    Article  Google Scholar 

  116. Simbulan-Rosenthal CM, Rosenthal DS, Iyer S, Boulares AH, Smulson ME (1998) Transient poly(ADP-ribosyl)ation of nuclear proteins and role of poly(ADP-ribose) polymerase in the early stages of apoptosis. J Biol Chem 273(22):13703–13712

    Article  CAS  PubMed  Google Scholar 

  117. Ha HC, Snyder SH (1999) Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci U S A 96(24):13978–13982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rodriguez-Vargas JM, Ruiz-Magana MJ, Ruiz-Ruiz C, Majuelos-Melguizo J, Peralta-Leal A, Rodriguez MI et al (2012) ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Res 22(7):1181–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Virag L, Robaszkiewicz A, Rodriguez-Vargas JM, Oliver FJ (2013) Poly(ADP-ribose) signaling in cell death. Mol Asp Med 34(6):1153–1167

    Article  CAS  Google Scholar 

  120. Vila M, Przedborski S (2003) Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 4(5):365–375

    Article  CAS  PubMed  Google Scholar 

  121. Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW et al (2002) Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science 298(5594):846–850

    Article  CAS  PubMed  Google Scholar 

  122. Cook DJ, Teves L, Tymianski M (2012) Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature 483(7388):213–217

    Article  CAS  PubMed  Google Scholar 

  123. Zhou L, Li F, Xu HB, Luo CX, Wu HY, Zhu MM et al (2010) Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat Med 16(12):1439–1443

    Article  CAS  PubMed  Google Scholar 

  124. Okamoto S, Pouladi MA, Talantova M, Yao D, Xia P, Ehrnhoefer DE et al (2009) Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med 15(12):1407–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Witt A, Macdonald N, Kirkpatrick P (2004) Memantine hydrochloride. Nat Rev Drug Discov 3(2):109–110

    Article  CAS  PubMed  Google Scholar 

  126. Basello DA, Scovassi AI (2015) Poly(ADP-ribosylation) and neurodegenerative disorders. Mitochondrion 24:56–63

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from MSCRFII-0429 and MSCRFII-0125 to V.L.D. 2013-MSCRF-0028 to J.F. and NIH/NINDS NS67525 to T.M.D. and V.L.D. T.M.D. is the Leonard and Madlyn Abramson Professor in Neurodegenerative Diseases. We thank I-Hsun Wu for drawing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valina L. Dawson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fan, J., Dawson, T.M., Dawson, V.L. (2017). Cell Death Mechanisms of Neurodegeneration. In: Beart, P., Robinson, M., Rattray, M., Maragakis, N. (eds) Neurodegenerative Diseases. Advances in Neurobiology, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-57193-5_16

Download citation

Publish with us

Policies and ethics