Skip to main content

From Molecule to Drug

  • Chapter
  • First Online:
Molecular Parasitology
  • 1462 Accesses

Abstract

Drug development for protozoan parasites has gained a renewed impetus at the turn of the century with the foundation of product development partnerships such as the Drugs for Neglected Diseases initiative (DNDi) or Medicines for Malaria Venture (MMV). These organizations have established the required target-product profiles for new drugs and have set up research and development consortia involving partners from the academic, the pharmaceutical and the governmental sector. This has successfully replenished the drug development pipelines for malaria, human African trypanosomiasis and other parasitic diseases. In spite of recent breakthroughs in drug target identification and validation, most of the new drug candidates have been found through cell-based screens. Several new chemical entities against Plasmodium falciparum or Trypanosoma brucei are being tested in the clinical phase of development. However, a large need for new leads persists for Leishmania spp. and Trypanosoma cruzi. Here we give an overview on antiparasitic drug targets and illustrate the research and development pipeline with recent success stories for malaria and human African trypanosomiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso PL, Brown G, Arevalo-Herrera M, Binka F, Chitnis C, Collins F, Doumbo OK, Greenwood B, Hall BF, Levine MM, Mendis K, Newman RD, Plowe CV, Rodriguez MH, Sinden R, Slutsker L, Tanner M (2011) A research agenda to underpin malaria eradication. PLoS Med 8:e1000406

    Article  PubMed  PubMed Central  Google Scholar 

  • Angulo-Barturen I, Jimenez-Diaz MB, Mulet T, Rullas J, Herreros E, Ferrer S, Jimenez E, Mendoza A, Regadera J, Rosenthal PJ, Bathurst I, Pompliano DL, Gomez de las Heras F, Gargallo-Viola D (2008) A murine model of falciparum-malaria by in vivo selection of competent strains in non-myelodepleted mice engrafted with human erythrocytes. PLoS One 3:e2252

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker N, Glover L, Munday JC, Aguinaga AD, Barrett MP, de Koning HP, Horn D (2012) Aquaglyceroporin 2 controls susceptibility to melarsoprol and pentamidine in African trypanosomes. Proc Natl Acad Sci U S A 109:10996–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker N, de Koning HP, Mäser P, Horn D (2013) Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story. Trends Parasitol 29:110–8

    Article  CAS  PubMed  Google Scholar 

  • Baschong W, Wittlin S, Inglis KA, Fairlamb AH, Croft SL, Kumar TR, Fidock DA, Brun R (2011) Triclosan is minimally effective in rodent malaria models. Nat Med 17:33–4; author reply 34–35

    Article  CAS  PubMed  Google Scholar 

  • Bouteille B, Marie-Daragon A, Chauviere G, de Albuquerque C, Enanga B, Darde ML, Vallat JM, Perie J, Dumas M (1995) Effect of megazol on Trypanosoma brucei brucei acute and subacute infections in Swiss mice. Acta Trop 60:73–80

    Article  CAS  PubMed  Google Scholar 

  • Brun R, Blum J, Chappuis F, Burri C (2010) Human African trypanosomiasis. Lancet 375:148–59

    Article  PubMed  Google Scholar 

  • Brun R, Don R, Jacobs RT, Wang MZ, Barrett MP (2011) Development of novel drugs for human African trypanosomiasis. Future Microbiol 6:677–91

    Article  CAS  PubMed  Google Scholar 

  • Carter NS, Berger BJ, Fairlamb AH (1995) Uptake of diamidine drugs by the P2 nucleoside transporter in melarsen-sensitive and -resistant Trypanosoma brucei brucei. J Biol Chem 270:28153–57

    Article  CAS  PubMed  Google Scholar 

  • Charman SA, Arbe-Barnes S, Bathurst IC, Brun R, Campbell M, Charman WN, Chiu FC, Chollet J, Craft JC, Creek DJ, Dong Y, Matile H, Maurer M, Morizzi J, Nguyen T, Papastogiannidis P, Scheurer C, Shackleford DM, Sriraghavan K, Stingelin L, Tang Y, Urwyler H, Wang X, White KL, Wittlin S, Zhou L, Vennerstrom JL (2011) Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proc Natl Acad Sci U S A 108:4400–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatelain E (2015) Chagas disease drug discovery: toward a new Era. J Biomol Screen 20:22–35

    Article  PubMed  Google Scholar 

  • Chattopadhyay A, Jafurulla M (2011) A novel mechanism for an old drug: amphotericin B in the treatment of visceral leishmaniasis. Biochem Biophys Res Commun 416:7–12

    Article  CAS  PubMed  Google Scholar 

  • Coteron JM, Marco M, Esquivias J, Deng X, White KL, White J, Koltun M, El Mazouni F, Kokkonda S, Katneni K, Bhamidipati R, Shackleford DM, Angulo-Barturen I, Ferrer SB, Jimenez-Diaz MB, Gamo FJ, Goldsmith EJ, Charman WN, Bathurst I, Floyd D, Matthews D, Burrows JN, Rathod PK, Charman SA, Phillips MA (2011) Structure-guided lead optimization of triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential. J Med Chem 54:5540–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham ML, Zvelebil MJ, Fairlamb AH (1994) Mechanism of inhibition of trypanothione reductase and glutathione reductase by trivalent organic arsenicals. Eur J Biochem 221:285–95

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Wittlin S, Sriraghavan K, Chollet J, Charman SA, Charman WN, Scheurer C, Urwyler H, Santo TJ, Snyder C, Creek DJ, Morizzi J, Koltun M, Matile H, Wang X, Padmanilayam M, Tang Y, Dorn A, Brun R, Vennerstrom JL (2010) The structure-activity relationship of the antimalarial ozonide arterolane (OZ277). J Med Chem 53:481–91

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich P (1907) Chemotherapeutische trypanosomen-studien. Berliner klinische Wochenschrift 11:310–14

    Google Scholar 

  • Fairlamb A, Blackburn P, Ulrich P, Chait B, Cerami A (1985) Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science 22:1485–87

    Article  Google Scholar 

  • Fügi MA, Wittlin S, Dong Y, Vennerstrom JL (2010) Probing the antimalarial mechanism of artemisinin and OZ277 (arterolane) with nonperoxidic isosteres and nitroxyl radicals. Antimicrob Agents Chemother 54:1042–6

    Article  PubMed  Google Scholar 

  • Fügi MA, Gunasekera K, Ochsenreiter T, Guan X, Wenk MR, Mäser P (2014) Genome profiling of sterol synthesis shows convergent evolution in parasites and guides chemotherapeutic attack. J Lipid Res 55:929–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Guttmann P, Ehrlich P (1891) Ãœber die Wirkung des Methylenblau bei Malaria. Berliner Klinische Wochenschrift 39:953–56

    Google Scholar 

  • Holmes P (2014) First WHO meeting of stakeholders on elimination of gambiense Human African Trypanosomiasis. PLoS Negl Trop Dis 8:e3244

    Article  PubMed  PubMed Central  Google Scholar 

  • Iten M, Mett H, Evans A, Enyaru JC, Brun R, Kaminsky R (1997) Alterations in ornithine decarboxylase characteristics account for tolerance of Trypanosoma brucei rhodesiense to D. L-alpha-difluoromethylornithine. Antimicrob Agents Chemother 41:1922–25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs RT, Nare B, Wring SA, Orr MD, Chen D, Sligar JM, Jenks MX, Noe RA, Bowling TS, Mercer LT, Rewerts C, Gaukel E, Owens J, Parham R, Randolph R, Beaudet B, Bacchi CJ, Yarlett N, Plattner JJ, Freund Y, Ding C, Akama T, Zhang YK, Brun R, Kaiser M, Scandale I, Don R (2011) SCYX-7158, an orally-active benzoxaborole for the treatment of stage 2 human African trypanosomiasis. PLoS Negl Trop Dis 5:e1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, Turbachova I, Eberl M, Zeidler J, Lichtenthaler HK, Soldati D, Beck E (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285:1573–6

    Article  CAS  PubMed  Google Scholar 

  • Kaiser M, Wittlin S, Nehrbass-Stuedli A, Dong Y, Wang X, Hemphill A, Matile H, Brun R, Vennerstrom JL (2007) Peroxide bond-dependent antiplasmodial specificity of artemisinin and OZ277 (RBx11160). Antimicrob Agents Chemother 51:2991–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaminsky R, Schmid C, Brun R (1996) An 'in vitro selectivity index' for evaluation of cytotoxicity of antitrypanosomal compounds. Tropical Medicine & International Health 1:A36–A36

    Google Scholar 

  • Lanaspa M, Moraleda C, Machevo S, Gonzalez R, Serrano B, Macete E, Cistero P, Mayor A, Hutchinson D, Kremsner PG, Alonso P, Menendez C, Bassat Q (2012) Inadequate efficacy of a new formulation of fosmidomycin-clindamycin combination in Mozambican children less than three years old with uncomplicated Plasmodium falciparum malaria. Antimicrob Agents Chemother 56:2923–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mäser P, Sütterlin C, Kralli A, Kaminsky R (1999) A nucleoside transporter from Trypanosoma brucei involved in drug resistance. Science 285:242–4

    Article  PubMed  Google Scholar 

  • Matovu E, Stewart ML, Geiser F, Brun R, Mäser P, Wallace LJ, Burchmore RJ, Enyaru JC, Barrett MP, Kaminsky R, Seebeck T, de Koning HP (2003) Mechanisms of arsenical and diamidine uptake and resistance in Trypanosoma brucei. Euk Cell 2:1003–8

    Article  CAS  Google Scholar 

  • Molina I, Gomez i Prat J, Salvador F, Trevino B, Sulleiro E, Serre N, Pou D, Roure S, Cabezos J, Valerio L, Blanco-Grau A, Sanchez-Montalva A, Vidal X, Pahissa A (2014) Randomized trial of posaconazole and benznidazole for chronic Chagas' disease. N Engl J Med 370:1899–908

    Article  PubMed  Google Scholar 

  • Munday JC, Eze AA, Baker N, Glover L, Clucas C, Aguinaga AD, Natto MJ, Teka IA, McDonald J, Lee RS, Graf FE, Ludin P, Burchmore RJ, Turner CM, Tait A, MacLeod A, Maser P, Barrett MP, Horn D, De Koning HP (2014) Trypanosoma brucei aquaglyceroporin 2 is a high-affinity transporter for pentamidine and melaminophenyl arsenic drugs and the main genetic determinant of resistance to these drugs. J Antimicrob Chemother 69:651–63

    Article  CAS  PubMed  Google Scholar 

  • Opperdoes FR (1985) Biochemical peculiarities of trypanosomes, African and South American. Br Med Bull 41:130–6

    CAS  PubMed  Google Scholar 

  • Phillips MA, Coffino P, Wang CC (1987) Cloning and sequencing of the ornithine decarboxylase gene from Trypanosoma brucei. Implications for enzyme turnover and selective difluoromethylornithine inhibition J Biol Chem 262:8721–7

    CAS  PubMed  Google Scholar 

  • Puig M, Grajkowski A, Boczkowska M, Ausin C, Beaucage SL, Verthelyi D (2006) Use of thermolytic protective groups to prevent G-tetrad formation in CpG ODN type D: structural studies and immunomodulatory activity in primates. Nucleic Acids Res 34:6488–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ralph SA, van Dooren GG, Waller RF, Crawford MJ, Fraunholz MJ, Foth BJ, Tonkin CJ, Roos DS, McFadden GI (2004) Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2:203–16

    Article  CAS  PubMed  Google Scholar 

  • Rottmann M, McNamara C, Yeung BK, Lee MC, Zou B, Russell B, Seitz P, Plouffe DM, Dharia NV, Tan J, Cohen SB, Spencer KR, Gonzalez-Paez GE, Lakshminarayana SB, Goh A, Suwanarusk R, Jegla T, Schmitt EK, Beck HP, Brun R, Nosten F, Renia L, Dartois V, Keller TH, Fidock DA, Winzeler EA, Diagana TT (2010) Spiroindolones, a potent compound class for the treatment of malaria. Science 329:1175–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surolia N, Surolia A (2001) Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nat Med 7:167–73

    Article  CAS  PubMed  Google Scholar 

  • Tarral A, Blesson S, Mordt OV, Torreele E, Sassella D, Bray MA, Hovsepian L, Evene E, Gualano V, Felices M, Strub-Wourgaft N (2014) Determination of an optimal dosing regimen for fexinidazole, a novel oral drug for the treatment of human African trypanosomiasis: first-in-human studies. Clin Pharmacokinet 53:565–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torreele E, Bourdin TB, Tweats D, Kaiser M, Brun R, Mazue G, Bray MA, Pecoul B (2011) Fexinidazole–a new oral nitroimidazole drug candidate entering clinical development for the treatment of sleeping sickness. PLoS Negl Trop Dis 4:e923

    Article  Google Scholar 

  • Tweats D, Bourdin TB, Torreele E (2012) Genotoxicity profile of fexinidazole–a drug candidate in clinical development for human African trypanomiasis (sleeping sickness)., Mutagenesis

    Google Scholar 

  • Urbina JA (2009) Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop 115:55–68

    Article  PubMed  Google Scholar 

  • Wenzler T, Yang S, Braissant O, Boykin DW, Brun R, Wang MZ (2013) Pharmacokinetics, Trypanosoma brucei gambiense efficacy, and time of drug action of DB829, a preclinical candidate for treatment of second-stage human African trypanosomiasis. Antimicrob Agents Chemother 57:5330–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzler T, Yang S, Patrick DA, Braissant O, Ismail MA, Tidwell RR, Boykin DW, Wang MZ, Brun R (2014) In vitro and in vivo evaluation of 28DAP010, a novel diamidine for treatment of second-stage African sleeping sickness. Antimicrob Agents Chemother 58:4452–63

    Article  PubMed  PubMed Central  Google Scholar 

  • WHO (2014) World malaria report. Geneva

    Google Scholar 

  • Wilkinson SR, Taylor MC, Horn D, Kelly JM, Cheeseman I (2008) A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc Natl Acad Sci U S A 105:5022–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Rathod PK (2002) Divergent regulation of dihydrofolate reductase between malaria parasite and human host. Science 296:545–47

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reto Brun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Mäser, P., Brun, R. (2016). From Molecule to Drug. In: Walochnik, J., Duchêne, M. (eds) Molecular Parasitology. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1416-2_15

Download citation

Publish with us

Policies and ethics