Skip to main content

An Overview of Homocysteine Metabolism

  • Chapter
  • First Online:
Homocysteine in Protein Structure/Function and Human Disease

Abstract

Mammals, in contrast to bacteria and plants, cannot make their own methionine (Met). Thus, in humans and animals, Met is an essential amino acid that is provided in the form of proteins ingested as food. In our digestive tract dietary proteins are hydrolyzed to amino acids. Met released from dietary proteins is taken up by the epithelium of the digestive tract and transported in the blood to cells of various organs. In every cell of the body Met is metabolized by two major pathways (Fig. 1.1): (1) as a building block to make new proteins in the ribosomal protein biosynthetic apparatus and (2) as a precursor of S-adenosylmethionine (AdoMet), a universal donor that provides methyl groups for biological methylation reactions and propyl groups for polyamine biosynthesis (both derived from Met). In metabolic pathways (1) and (2), Met is activated by reactions with ATP, albeit in a pathway-specific manner: the carboxyl group of Met is activated in pathway (1), while the thioether sulfur atom is activated in pathway (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jakubowski H. Quality control in tRNA charging—editing of homocysteine. Acta Biochim Pol. 2011;58(2):149–63.

    PubMed  CAS  Google Scholar 

  2. Mudd SH, Levy HL, Kraus JP. Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B, editors. The metabolic and molecular bases of inherited disease, vol. 2. 8th ed. New York, NY: Mc Graw-Hill; 2001. p. 2007–56.

    Google Scholar 

  3. Harker LA, Slichter SJ, Scott CR, Ross R. Homocystinemia. Vascular injury and arterial thrombosis. N Engl J Med. 1974;291(11):537–43.

    PubMed  CAS  Google Scholar 

  4. Kluijtmans LA, Boers GH, Kraus JP, van den Heuvel LP, Cruysberg JR, Trijbels FJ, et al. The molecular basis of cystathionine beta-synthase deficiency in Dutch patients with homocystinuria: effect of CBS genotype on biochemical and clinical phenotype and on response to treatment. Am J Hum Genet. 1999;65(1):59–67.

    PubMed  CAS  Google Scholar 

  5. Yap S, Boers GH, Wilcken B, Wilcken DE, Brenton DP, Lee PJ, et al. Vascular outcome in patients with homocystinuria due to cystathionine beta-synthase deficiency treated chronically: a multicenter observational study. Arterioscler Thromb Vasc Biol. 2001;21(12):2080–5.

    PubMed  CAS  Google Scholar 

  6. Rosenblatt D, Fenton W. Disorders of transsulfuration. In: Scriver C, Beaudet A, Sly W, Valle D, Childs B, Kinzler K, Vogelstein B, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York, NY: Mc Graw-Hill; 2001. p. 2007–56.

    Google Scholar 

  7. Refsum H, Nurk E, Smith AD, Ueland PM, Gjesdal CG, Bjelland I, et al. The Hordaland Homocysteine Study: a community-based study of homocysteine, its determinants, and associations with disease. J Nutr. 2006;136(6 Suppl):1731S–40.

    PubMed  CAS  Google Scholar 

  8. Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ. 2002;325(7374):1202.

    PubMed  Google Scholar 

  9. Anderson JL, Muhlestein JB, Horne BD, Carlquist JF, Bair TL, Madsen TE, et al. Plasma homocysteine predicts mortality independently of traditional risk factors and C-reactive protein in patients with angiographically defined coronary artery disease. Circulation. 2000;102(11):1227–32.

    PubMed  CAS  Google Scholar 

  10. Zhang C, Cai Y, Adachi MT, Oshiro S, Aso T, Kaufman RJ, et al. Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response. J Biol Chem. 2001;276(38):35867–74.

    PubMed  CAS  Google Scholar 

  11. Roybal CN, Yang S, Sun CW, Hurtado D, Vander Jagt DL, Townes TM, et al. Homocysteine increases the expression of vascular endothelial growth factor by a mechanism involving endoplasmic reticulum stress and transcription factor ATF4. J Biol Chem. 2004;279(15):14844–52.

    PubMed  CAS  Google Scholar 

  12. Kerkeni M, Tnani M, Chuniaud L, Miled A, Maaroufi K, Trivin F. Comparative study on in vitro effects of homocysteine thiolactone and homocysteine on HUVEC cells: evidence for a stronger proapoptotic and proinflammative homocysteine thiolactone. Mol Cell Biochem. 2006;291(1–2):119–26.

    PubMed  CAS  Google Scholar 

  13. Jakubowski H. The determination of homocysteine-thiolactone in biological samples. Anal Biochem. 2002;308(1):112–9.

    PubMed  CAS  Google Scholar 

  14. Jakubowski H. Molecular basis of homocysteine toxicity in humans. Cell Mol Life Sci. 2004;61(4):470–87.

    PubMed  CAS  Google Scholar 

  15. Jakubowski H. Pathophysiological consequences of homocysteine excess. J Nutr. 2006;136(6 Suppl):1741S–9.

    PubMed  CAS  Google Scholar 

  16. Glowacki R, Bald E, Jakubowski H. Identification and origin of Nepsilon-homocysteinyl-lysine isopeptide in humans and mice. Amino Acids. 2010;39(5):1563–9.

    PubMed  CAS  Google Scholar 

  17. Jakubowski H. Metabolism of homocysteine thiolactone in human cell cultures. Possible mechanism for pathological consequences of elevated homocysteine levels. Possible mechanism for pathological consequences of elevated homocysteine levels. J Biol Chem. 1997;272(3):1935–42.

    PubMed  CAS  Google Scholar 

  18. Jakubowski H, Zhang L, Bardeguez A, Aviv A. Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: implications for atherosclerosis. Circ Res. 2000;87(1):45–51.

    PubMed  CAS  Google Scholar 

  19. Jakubowski H. Translational incorporation of S-nitrosohomocysteine into protein. J Biol Chem. 2000;275(29):21813–6.

    PubMed  CAS  Google Scholar 

  20. Jakubowski H. Translational accuracy of aminoacyl-tRNA synthetases: implications for atherosclerosis. J Nutr. 2001;131(11):2983S–7.

    PubMed  CAS  Google Scholar 

  21. Jakubowski H. Homocysteine-thiolactone and S-nitroso-homocysteine mediate incorporation of homocysteine into protein in humans. Clin Chem Lab Med. 2003;41(11):1462–6.

    PubMed  CAS  Google Scholar 

  22. Jakubowski H. Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels. FASEB J. 1999;13(15):2277–83.

    PubMed  CAS  Google Scholar 

  23. Jakubowski H. Homocysteine is a protein amino acid in humans. Implications for homocysteine-linked disease. J Biol Chem. 2002;277(34):30425–8.

    PubMed  CAS  Google Scholar 

  24. Teng YW, Mehedint MG, Garrow TA, Zeisel SH. Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas. J Biol Chem. 2011;286(42):36258–67.

    PubMed  CAS  Google Scholar 

  25. Jakubowski H. Calcium-dependent human serum homocysteine thiolactone hydrolase. A protective mechanism against protein N-homocysteinylation. J Biol Chem. 2000;275(6):3957–62.

    PubMed  CAS  Google Scholar 

  26. Jakubowski H, tRNA synthetase editing of amino acids. In: Encyclopedia of life sciences. Chichester, UK: Wiley; 2005. http://www.els.net/doi:10.1038/npg.els.0003933

  27. Jakubowski H. Accuracy of aminoacyl-tRNA synthetases: proofreading of amino acids. In: Ibba M, Francklyn C, Cusack S, editors. The aminoacyl-tRNA synthetases. Georgetown, TX: Landes Bioscience/Eurekah.com; 2005. p. 384–96.

    Google Scholar 

  28. Jakubowski H. Mechanism of the condensation of homocysteine thiolactone with aldehydes. Chemistry. 2006;12(31):8039–43.

    PubMed  CAS  Google Scholar 

  29. Zimny J, Sikora M, Guranowski A, Jakubowski H. Protective mechanisms against homocysteine toxicity: the role of bleomycin hydrolase. J Biol Chem. 2006;281(32):22485–92.

    PubMed  CAS  Google Scholar 

  30. Zaabczyk M, Glowacki R, Machnik A, Herod P, Kazek G, Jakubowski H, et al. Elevated concentrations of Nvarepsilon-homocysteinyl-lysine isopeptide in acute myocardial infarction: links with ADMA formation. Clin Chem Lab Med. 2011;49(4):729–35.

    PubMed  Google Scholar 

  31. Refsum H, Smith AD, Ueland PM, Nexo E, Clarke R, McPartlin J, et al. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem. 2004;50(1):3–32.

    PubMed  CAS  Google Scholar 

  32. Gerritsen T, Vaughn JG, Waisman HA. The identification of homocystine in the urine. Biochem Biophys Res Commun. 1962;9:493–6.

    PubMed  CAS  Google Scholar 

  33. Frimpter GW. The disulfide of L-cysteine and L-homocysteine in urine of patients with cystinuria. J Biol Chem. 1961;236:PC51–3.

    PubMed  CAS  Google Scholar 

  34. Schneider JA, Bradley KH, Seegmiller JE. Identification and measurement of cysteine-homocysteine mixed disulfide in plasma. J Lab Clin Med. 1968;71(1):122–5.

    PubMed  CAS  Google Scholar 

  35. Kang SS, Wong PW, Becker N. Protein-bound homocyst(e)ine in normal subjects and in patients with homocystinuria. Pediatr Res. 1979;13(10):1141–3.

    PubMed  CAS  Google Scholar 

  36. Smolin LA, Benevenga NJ. Accumulation of homocyst(e)ine in vitamin B-6 deficiency: a model for the study of cystathionine beta-synthase deficiency. J Nutr. 1982;112(7):1264–72.

    PubMed  CAS  Google Scholar 

  37. Chwatko G, Boers GH, Strauss KA, Shih DM, Jakubowski H. Mutations in methylenetetrahydrofolate reductase or cystathionine beta-synthase gene, or a high-methionine diet, increase homocysteine thiolactone levels in humans and mice. FASEB J. 2007;21(8):1707–13.

    PubMed  CAS  Google Scholar 

  38. Chwatko G, Jakubowski H. The determination of homocysteine-thiolactone in human plasma. Anal Biochem. 2005;337(2):271–7.

    PubMed  CAS  Google Scholar 

  39. Chwatko G, Jakubowski H. Urinary excretion of homocysteine-thiolactone in humans. Clin Chem. 2005;51(2):408–15.

    PubMed  CAS  Google Scholar 

  40. Glowacki R, Jakubowski H. Cross-talk between Cys34 and lysine residues in human serum albumin revealed by N-homocysteinylation. J Biol Chem. 2004;279(12):10864–71.

    PubMed  CAS  Google Scholar 

  41. Medici V, Peerson JM, Stabler SP, French SW, Gregory 3rd JF, Virata MC, et al. Impaired homocysteine transsulfuration is an indicator of alcoholic liver disease. J Hepatol. 2010;53(3):551–7.

    PubMed  CAS  Google Scholar 

  42. Stabler SP, Lindenbaum J, Savage DG, Allen RH. Elevation of serum cystathionine levels in patients with cobalamin and folate deficiency. Blood. 1993;81(12):3404–13.

    PubMed  CAS  Google Scholar 

  43. Santhosh-Kumar CR, Deutsch JC, Kolhouse JC, Hassell KL, Kolhouse JF. Measurement of excitatory sulfur amino acids, cysteine sulfinic acid, cysteic acid, homocysteine sulfinic acid, and homocysteic acid in serum by stable isotope dilution gas chromatography–mass spectrometry and selected ion monitoring. Anal Biochem. 1994;220(2):249–56.

    PubMed  CAS  Google Scholar 

  44. Stamler JS, Osborne JA, Jaraki O, Rabbani LE, Mullins M, Singel D, et al. Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J Clin Invest. 1993;91(1):308–18.

    PubMed  CAS  Google Scholar 

  45. Lee JS, Kang Decker N, Chatterjee S, Yao J, Friedman S, Shah V. Mechanisms of nitric oxide interplay with Rho GTPase family members in modulation of actin membrane dynamics in pericytes and fibroblasts. Am J Pathol. 2005;166(6):1861–70.

    PubMed  CAS  Google Scholar 

  46. Mudd SH, Finkelstein JD, Refsum H, Ueland PM, Malinow MR, Lentz SR, et al. Homocysteine and its disulfide derivatives: a suggested consensus terminology. Arterioscler Thromb Vasc Biol. 2000;20(7):1704–6.

    PubMed  CAS  Google Scholar 

  47. Refsum H, Helland S, Ueland PM. Radioenzymic determination of homocysteine in plasma and urine. Clin Chem. 1985;31(4):624–8.

    PubMed  CAS  Google Scholar 

  48. Sass JO, Nakanishi T, Sato T, Sperl W, Shimizu A. S-homocysteinylation of transthyretin is detected in plasma and serum of humans with different types of hyperhomocysteinemia. Biochem Biophys Res Commun. 2003;310(1):242–6.

    PubMed  CAS  Google Scholar 

  49. Lim A, Sengupta S, McComb ME, Theberge R, Wilson WG, Costello CE, et al. In vitro and in vivo interactions of homocysteine with human plasma transthyretin. J Biol Chem. 2003;278(50):49707–13.

    PubMed  CAS  Google Scholar 

  50. Hortin GL, Seam N, Hoehn GT. Bound homocysteine, cysteine, and cysteinylglycine distribution between albumin and globulins. Clin Chem. 2006;52(12):2258–64.

    PubMed  CAS  Google Scholar 

  51. Eagle H, Oyama VI, Piez KA. The reversible binding of half-cystine residues to serum protein, and its bearing on the cystine requirement of cultured mammalian cells. J Biol Chem. 1960;235:1719–26.

    PubMed  CAS  Google Scholar 

  52. King TP. On the sulfhydryl group of human plasma albumin. J Biol Chem. 1961;236:PC5.

    PubMed  CAS  Google Scholar 

  53. Malloy MH, Rassin DK, Gaull GE. A method for measurement of free and bound plasma cyst(e)ine. Anal Biochem. 1981;113(2):407–15.

    PubMed  CAS  Google Scholar 

  54. Hanyu N, Shimizu T, Yamauchi K, Okumura N, Hidaka H. Characterization of cysteine and homocysteine bound to human serum transthyretin. Clin Chim Acta. 2009;403(1–2):70–5.

    PubMed  CAS  Google Scholar 

  55. Mansoor MA, Svardal AM, Ueland PM. Determination of the in vivo redox status of cysteine, cysteinylglycine, homocysteine, and glutathione in human plasma. Anal Biochem. 1992;200(2):218–29.

    PubMed  CAS  Google Scholar 

  56. Muscat JE, Kleinman W, Colosimo S, Muir A, Lazarus P, Park J, et al. Enhanced protein glutathiolation and oxidative stress in cigarette smokers. Free Radic Biol Med. 2004;36(4):464–70.

    PubMed  CAS  Google Scholar 

  57. Jakubowski H, Perla-Kajan J, Finnell RH, Cabrera RM, Wang H, Gupta S, et al. Genetic or nutritional disorders in homocysteine or folate metabolism increase protein N-homocysteinylation in mice. FASEB J. 2009;23(6):1721–7.

    PubMed  CAS  Google Scholar 

  58. Svardal A, Refsum H, Ueland PM. Determination of in vivo protein binding of homocysteine and its relation to free homocysteine in the liver and other tissues of the rat. J Biol Chem. 1986;261(7):3156–63.

    PubMed  CAS  Google Scholar 

  59. Jakubowski H, Boers GH, Strauss KA. Mutations in cystathionine {beta}-synthase or methylenetetrahydrofolate reductase gene increase N-homocysteinylated protein levels in humans. FASEB J. 2008;22(12):4071–6.

    PubMed  CAS  Google Scholar 

  60. Kerins DM, Koury MJ, Capdevila A, Rana S, Wagner C. Plasma S-adenosylhomocysteine is a more sensitive indicator of cardiovascular disease than plasma homocysteine. Am J Clin Nutr. 2001;74(6):723–9.

    PubMed  CAS  Google Scholar 

  61. Stabler SP, Allen RH. Quantification of serum and urinary S-adenosylmethionine and S-adenosylhomocysteine by stable-isotope-dilution liquid chromatography-mass spectrometry. Clin Chem. 2004;50(2):365–72.

    PubMed  CAS  Google Scholar 

  62. Maclean KN, Sikora J, Kozich V, Jiang H, Greiner LS, Kraus E, et al. Cystathionine beta-synthase null homocystinuric mice fail to exhibit altered hemostasis or lowering of plasma homocysteine in response to betaine treatment. Mol Genet Metab. 2010;101(2–3):163–71.

    PubMed  CAS  Google Scholar 

  63. Quinn CT, Griener JC, Bottiglieri T, Hyland K, Farrow A, Kamen BA. Elevation of homocysteine and excitatory amino acid neurotransmitters in the CSF of children who receive methotrexate for the treatment of cancer. J Clin Oncol. 1997;15(8):2800–6.

    PubMed  CAS  Google Scholar 

  64. Omori S, Kodama H, Ikegami T, Mizuhara S, Oura T. Unusual sulfur-containing amino acids in the urine of homocystinuric patients: III. Homocysteic acid, homocysteine sulfinic acid, S-(carboxymethylthio) homocysteine, and S-(3-hydroxy-3-carboxy-n-propyl). Physiol Chem Phys. 1972;4(3):286–94.

    PubMed  CAS  Google Scholar 

  65. Hasegawa T, Ichiba M, Matsumoto SE, Kasanuki K, Hatano T, Fujishiro H, et al. Urinary homocysteic acid levels correlate with mini-mental state examination scores in Alzheimer’s disease patients. J Alzheimers Dis. 2012;31(1):59–64.

    PubMed  CAS  Google Scholar 

  66. Frauscher G, Karnaukhova E, Muehl A, Hoeger H, Lubec B. Oral administration of homocysteine leads to increased plasma triglycerides and homocysteic acid-additional mechanisms in homocysteine induced endothelial damage? Life Sci. 1995;57(8):813–7.

    PubMed  CAS  Google Scholar 

  67. Vijayanathan V, Gulinello M, Ali N, Cole PD. Persistent cognitive deficits, induced by intrathecal methotrexate, are associated with elevated CSF concentrations of excitotoxic glutamate analogs and can be reversed by an NMDA antagonist. Behav Brain Res. 2011;225(2):491–7.

    PubMed  CAS  Google Scholar 

  68. Hasegawa T, Mikoda N, Kitazawa M, LaFerla FM. Treatment of Alzheimer’s disease with anti-homocysteic acid antibody in 3xTg-AD male mice. PLoS One. 2010;5(1):e8593.

    PubMed  Google Scholar 

  69. Waller SJ, Kilpatrick IC, Chan MW, Evans RH. The influence of assay conditions on measurement of excitatory dibasic sulphinic and sulphonic alpha-amino acids in nervous tissue. J Neurosci Methods. 1991;36(2–3):167–76.

    PubMed  CAS  Google Scholar 

  70. Kopoldova J, Liebster J, Gross E. Radiation chemical reactions in aqueous solutions of methionine and its peptides. Radiat Res. 1967;30(2):261–74.

    PubMed  CAS  Google Scholar 

  71. Bern M, Saladino J, Sharp JS. Conversion of methionine into homocysteic acid in heavily oxidized proteomics samples. Rapid commun mass spectrom. 2010;24(6):768–72.

    PubMed  CAS  Google Scholar 

  72. Parker ET, Cleaves HJ, Dworkin JP, Glavin DP, Callahan M, Aubrey A, et al. Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proc Natl Acad Sci USA. 2011;108(14):5526–31.

    PubMed  CAS  Google Scholar 

  73. Van Trump JE, Miller SL. Prebiotic synthesis of methionine. Science. 1972;178(4063):859–60.

    PubMed  Google Scholar 

  74. Salojin KV, Cabrera RM, Sun W, Chang WC, Lin C, Duncan L, et al. A mouse model of hereditary folate malabsorption: deletion of the PCFT gene leads to systemic folate deficiency. Blood. 2011;117(18):4895–904.

    PubMed  CAS  Google Scholar 

  75. Carrillo-Carrasco N, Chandler RJ, Venditti CP. Combined methylmalonic acidemia and homocystinuria, cblC type. I. Clinical presentations, diagnosis and management. J Inherit Metab Dis. 2012;35(1):91–102.

    PubMed  CAS  Google Scholar 

  76. Carrillo-Carrasco N, Venditti CP. Combined methylmalonic acidemia and homocystinuria, cblC type. II. Complications, pathophysiology, and outcomes. J Inherit Metab Dis. 2012;35(1):103–14.

    PubMed  CAS  Google Scholar 

  77. Undas A, Jakubowski H. Letter by Undas and Jakubowski regarding article, “Relationship between homocysteine and mortality in chronic kidney disease”. Circulation. 2006;114(16):e547. author reply e548.

    PubMed  Google Scholar 

  78. Jakubowski H. Anti-N-homocysteinylated protein autoantibodies and cardiovascular disease. Clin Chem Lab Med. 2005;43(10):1011–4.

    PubMed  CAS  Google Scholar 

  79. Undas A, Jankowski M, Twardowska M, Padjas A, Jakubowski H, Szczeklik A. Antibodies to N-homocysteinylated albumin as a marker for early-onset coronary artery disease in men. Thromb Haemost. 2005;93(2):346–50.

    PubMed  CAS  Google Scholar 

  80. Chambers JC, Obeid OA, Kooner JS. Physiological increments in plasma homocysteine induce vascular endothelial dysfunction in normal human subjects. Arterioscler Thromb Vasc Biol. 1999;19(12):2922–7.

    PubMed  CAS  Google Scholar 

  81. Chambers JC, Ueland PM, Wright M, Dore CJ, Refsum H, Kooner JS. Investigation of relationship between reduced, oxidized, and protein-bound homocysteine and vascular endothelial function in healthy human subjects. Circ Res. 2001;89(2):187–92.

    PubMed  CAS  Google Scholar 

  82. Jakubowski H, Goldman E. Synthesis of homocysteine thiolactone by methionyl-tRNA synthetase in cultured mammalian cells. FEBS Lett. 1993;317(3):237–40.

    PubMed  CAS  Google Scholar 

  83. Jakubowski H. Homocysteine thiolactone: metabolic origin and protein homocysteinylation in humans. J Nutr. 2000;130(2S Suppl):377S–81.

    PubMed  CAS  Google Scholar 

  84. Borowczyk K, Shih DM, Jakubowski H. Metabolism and neurotoxicity of homocysteine thiolactone in mice: evidence for a protective role of paraoxonase 1. J Alzheimers Dis. 2012;30(2):225–31.

    PubMed  CAS  Google Scholar 

  85. Borowczyk K, Tisonczyk J, Jakubowski H. Metabolism and neurotoxicity of homocysteine thiolactone in mice: protective role of bleomycin hydrolase. Amino Acids. 2012;43(3):1339–48.

    PubMed  CAS  Google Scholar 

  86. Van Aerts LA, Klaasboer HH, Postma NS, Pertijs JC, Peereboom JH, Eskes TK, et al. Stereospecific in vitro embryotoxicity of L-homocysteine in pre- and post-implantation rodent embryos. Toxicol In Vitro. 1993;7(6):743–9.

    PubMed  Google Scholar 

  87. Jakubowski H. The molecular basis of homocysteine thiolactone-mediated vascular disease. Clin Chem Lab Med. 2007;45(12):1704–16.

    PubMed  CAS  Google Scholar 

  88. Zinellu A, Sotgia S, Scanu B, Pintus G, Posadino AM, Cossu A, et al. S-homocysteinylated LDL apolipoprotein B adversely affects human endothelial cells in vitro. Atherosclerosis. 2009;206(1):40–6.

    PubMed  CAS  Google Scholar 

  89. Jacovina AT, Deora AB, Ling Q, Broekman MJ, Almeida D, Greenberg CB, et al. Homocysteine inhibits neoangiogenesis in mice through blockade of annexin A2-dependent fibrinolysis. J Clin Invest. 2009;119(11):3384–94.

    PubMed  CAS  Google Scholar 

  90. Barbato JC, Catanescu O, Murray K, DiBello PM, Jacobsen DW. Targeting of metallothionein by L-homocysteine: a novel mechanism for disruption of zinc and redox homeostasis. Arterioscler Thromb Vasc Biol. 2007;27(1):49–54.

    PubMed  CAS  Google Scholar 

  91. Harker LA, Ross R, Slichter SJ, Scott CR. Homocystine-induced arteriosclerosis. The role of endothelial cell injury and platelet response in its genesis. J Clin Invest. 1976;58(3):731–41.

    PubMed  CAS  Google Scholar 

  92. Mudd SH, Levy HL, Skovby F. Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease, vol. 1. 6th ed. New York, NY: Mc Graw-Hill; 1995. p. 1279–327.

    Google Scholar 

  93. Endo N, Nishiyama K, Otsuka A, Kanouchi H, Taga M, Oka T. Antioxidant activity of vitamin B6 delays homocysteine-induced atherosclerosis in rats. Br J Nutr. 2006;95(6):1088–93.

    PubMed  CAS  Google Scholar 

  94. Donahue S, Struman JA, Gaull G. Arteriosclerosis due to homocyst (e) inemia. Failure to reproduce the model in weanling rabbits. Am J Pathol. 1974;77(2):167–73.

    PubMed  CAS  Google Scholar 

  95. Makheja AN, Bombard AT, Randazzo RL, Bailey JM. Anti-inflammatory drugs in experimental atherosclerosis. Part 3. Evaluation of the atherogenicity of homocystine in rabbits. Atherosclerosis. 1978;29(1):105–12.

    PubMed  CAS  Google Scholar 

  96. Jakubowski H, Ambrosius WT, Pratt JH. Genetic determinants of homocysteine thiolactonase activity in humans: implications for atherosclerosis. FEBS Lett. 2001;491(1–2):35–9.

    PubMed  CAS  Google Scholar 

  97. Jakubowski H. Biosynthesis and reactions of homocysteine thiolactone. In: Jacobson D, Carmel R, editors. Homocysteine in health and disease. Cambridge: Cambridge University Press; 2001. p. 21–31.

    Google Scholar 

  98. Rosenquist TH, Ratashak SA, Selhub J. Homocysteine induces congenital defects of the heart and neural tube: effect of folic acid. Proc Natl Acad Sci USA. 1996;93(26):15227–32.

    PubMed  CAS  Google Scholar 

  99. Maestro de las Casas C, Epeldegui M, Tudela C, Varela-Moreiras G, Perez-Miguelsanz J. High exogenous homocysteine modifies eye development in early chick embryos. Birth Defects Res A Clin Mol Teratol. 2003;67(1):35–40.

    PubMed  CAS  Google Scholar 

  100. Spence AM, Rasey JS, Dwyer-Hansen L, Grunbaum Z, Livesey J, Chin L, et al. Toxicity, biodistribution and radioprotective capacity of L-homocysteine thiolactone in CNS tissues and tumors in rodents: comparison with prior results with phosphorothioates. Radiother Oncol. 1995;35(3):216–26.

    PubMed  CAS  Google Scholar 

  101. Folbergrova J. Anticonvulsant action of both NMDA and non-NMDA receptor antagonists against seizures induced by homocysteine in immature rats. Exp Neurol. 1997;145(2 Pt 1):442–50.

    PubMed  CAS  Google Scholar 

  102. Langmeier M, Folbergrova J, Haugvicova R, Pokorny J, Mares P. Neuronal cell death in hippocampus induced by homocysteic acid in immature rats. Epilepsia. 2003;44(3):299–304.

    PubMed  CAS  Google Scholar 

  103. Sprince H, Parker CM, Josephs Jr JA, Magazino J. Convulsant activity of homocysteine and other short-chain mercaptoacids: protection therefrom. Ann N Y Acad Sci. 1969;166(1):323–5.

    PubMed  CAS  Google Scholar 

  104. Greene ND, Dunlevy LE, Copp AJ. Homocysteine is embryotoxic but does not cause neural tube defects in mouse embryos. Anat Embryol (Berl). 2003;206(3):185–91.

    CAS  Google Scholar 

  105. Najib S, Sanchez-Margalet V. Homocysteine thiolactone inhibits insulin signaling, and glutathione has a protective effect. J Mol Endocrinol. 2001;27(1):85–91.

    PubMed  CAS  Google Scholar 

  106. Najib S, Sanchez-Margalet V. Homocysteine thiolactone inhibits insulin-stimulated DNA and protein synthesis: possible role of mitogen-activated protein kinase (MAPK), glycogen synthase kinase-3 (GSK-3) and p70 S6K phosphorylation. J Mol Endocrinol. 2005;34(1):119–26.

    PubMed  CAS  Google Scholar 

  107. Li Y, Jiang C, Xu G, Wang N, Zhu Y, Tang C, et al. Homocysteine upregulates resistin production from adipocytes in vivo and in vitro. Diabetes. 2008;57(4):817–27.

    PubMed  CAS  Google Scholar 

  108. Mercie P, Garnier O, Lascoste L, Renard M, Closse C, Durrieu F, et al. Homocysteine-thiolactone induces caspase-independent vascular endothelial cell death with apoptotic features. Apoptosis. 2000;5(5):403–11.

    PubMed  CAS  Google Scholar 

  109. Huang RF, Huang SM, Lin BS, Wei JS, Liu TZ. Homocysteine thiolactone induces apoptotic DNA damage mediated by increased intracellular hydrogen peroxide and caspase 3 activation in HL-60 cells. Life Sci. 2001;68(25):2799–811.

    PubMed  CAS  Google Scholar 

  110. Kamudhamas A, Pang L, Smith SD, Sadovsky Y, Nelson DM. Homocysteine thiolactone induces apoptosis in cultured human trophoblasts: a mechanism for homocysteine-mediated placental dysfunction? Am J Obstet Gynecol. 2004;191(2):563–71.

    PubMed  CAS  Google Scholar 

  111. Rodgers GM, Kane WH. Activation of endogenous factor V by a homocysteine-induced vascular endothelial cell activator. J Clin Invest. 1986;77(6):1909–16.

    PubMed  CAS  Google Scholar 

  112. Yang X, Gao Y, Zhou J, Zhen Y, Yang Y, Wang J, et al. Plasma homocysteine thiolactone adducts associated with risk of coronary heart disease. Clin Chim Acta. 2006;364(1–2):230–4.

    PubMed  CAS  Google Scholar 

  113. Capasso R, Sambri I, Cimmino A, Salemme S, Lombardi C, Acanfora F, et al. Homocysteinylated albumin promotes increased monocyte-endothelial cell adhesion and up-regulation of MCP1, Hsp60 and ADAM17. PLoS One. 2012;7(2):e31388.

    PubMed  CAS  Google Scholar 

  114. Ferretti G, Bacchetti T, Moroni C, Vignini A, Nanetti L, Curatola G. Effect of homocysteinylation of low density lipoproteins on lipid peroxidation of human endothelial cells. J Cell Biochem. 2004;92(2):351–60.

    PubMed  CAS  Google Scholar 

  115. Paoli P, Sbrana F, Tiribilli B, Caselli A, Pantera B, Cirri P, et al. Protein N-homocysteinylation induces the formation of toxic amyloid-like protofibrils. J Mol Biol. 2010;400(4):889–907.

    PubMed  CAS  Google Scholar 

  116. Undas A, Perla J, Lacinski M, Trzeciak W, Kazmierski R, Jakubowski H. Autoantibodies against N-homocysteinylated proteins in humans: implications for atherosclerosis. Stroke. 2004;35(6):1299–304.

    PubMed  CAS  Google Scholar 

  117. Undas A, Stepien E, Glowacki R, Tisonczyk J, Tracz W, Jakubowski H. Folic acid administration and antibodies against homocysteinylated proteins in subjects with hyperhomocysteinemia. Thromb Haemost. 2006;96(3):342–7.

    PubMed  CAS  Google Scholar 

  118. Undas A, Brozek J, Jankowski M, Siudak Z, Szczeklik A, Jakubowski H. Plasma homocysteine affects fibrin clot permeability and resistance to lysis in human subjects. Arterioscler Thromb Vasc Biol. 2006;26(6):1397–404.

    PubMed  CAS  Google Scholar 

  119. Sauls DL, Lockhart E, Warren ME, Lenkowski A, Wilhelm SE, Hoffman M. Modification of fibrinogen by homocysteine thiolactone increases resistance to fibrinolysis: a potential mechanism of the thrombotic tendency in hyperhomocysteinemia. Biochemistry. 2006;45(8):2480–7.

    PubMed  CAS  Google Scholar 

  120. Wang H, Yoshizumi M, Lai K, Tsai JC, Perrella MA, Haber E, et al. Inhibition of growth and p21ras methylation in vascular endothelial cells by homocysteine but not cysteine. J Biol Chem. 1997;272(40):25380–5.

    PubMed  CAS  Google Scholar 

  121. Ingrosso D, Cimmino A, Perna AF, Masella L, De Santo NG, De Bonis ML, et al. Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia. Lancet. 2003;361(9370):1693–9.

    PubMed  CAS  Google Scholar 

  122. Yi P, Melnyk S, Pogribna M, Pogribny IP, Hine RJ, James SJ. Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem. 2000;275(38):29318–23.

    PubMed  CAS  Google Scholar 

  123. Devlin AM, Bottiglieri T, Domann FE, Lentz SR. Tissue-specific changes in H19 methylation and expression in mice with hyperhomocysteinemia. J Biol Chem. 2005;280(27):25506–11.

    PubMed  CAS  Google Scholar 

  124. Caudill MA, Wang JC, Melnyk S, Pogribny IP, Jernigan S, Collins MD, et al. Intracellular S-adenosylhomocysteine concentrations predict global DNA hypomethylation in tissues of methyl-deficient cystathionine beta-synthase heterozygous mice. J Nutr. 2001;131(11):2811–8.

    PubMed  CAS  Google Scholar 

  125. Maclean KN, Greiner LS, Evans JR, Sood SK, Lhotak S, Markham NE, et al. Cystathionine protects against endoplasmic reticulum stress-induced lipid accumulation, tissue injury, and apoptotic cell death. J Biol Chem. 2012;287(38):31994–2005.

    PubMed  CAS  Google Scholar 

  126. Shi Q, Savage JE, Hufeisen SJ, Rauser L, Grajkowska E, Ernsberger P, et al. L-homocysteine sulfinic acid and other acidic homocysteine derivatives are potent and selective metabotropic glutamate receptor agonists. J Pharmacol Exp Ther. 2003;305(1):131–42.

    PubMed  CAS  Google Scholar 

  127. Parsons RB, Waring RH, Ramsden DB, Williams AC. In vitro effect of the cysteine metabolites homocysteic acid, homocysteine and cysteic acid upon human neuronal cell lines. Neurotoxicology. 1998;19(4–5):599–603.

    PubMed  CAS  Google Scholar 

  128. Kim JP, Koh JY, Choi DW. L-homocysteate is a potent neurotoxin on cultured cortical neurons. Brain Res. 1987;437(1):103–10.

    PubMed  CAS  Google Scholar 

  129. Schwarz S, Zhou GZ. N-methyl-D-aspartate receptors and CNS symptoms of homocystinuria. Lancet. 1991;337(8751):1226–7.

    PubMed  CAS  Google Scholar 

  130. Fritzer-Szekeres M, Blom HJ, Boers GH, Szekeres T, Lubec B. Growth promotion by homocysteine but not by homocysteic acid: a role for excessive growth in homocystinuria or proliferation in hyperhomocysteinemia? Biochim Biophys Acta. 1998;1407(1):1–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Jakubowski, H. (2013). An Overview of Homocysteine Metabolism. In: Homocysteine in Protein Structure/Function and Human Disease. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1410-0_2

Download citation

Publish with us

Policies and ethics