Skip to main content

Metal ions and beta amyloid: conformational modifications and biological aspects

  • Chapter
  • First Online:
Metal Ions in Neurological Systems
  • 922 Accesses

Abstract

Many molecular modifications such as senile plaques and neurofibrillary tangles are known to be associated with Alzheimer’s disease and other neurodegenerative diseases. In this connection, metal dyshomeostasis has aroused great interest and considerable support in recent years as relevant pathological cofactors of neurodegeneration. It has been largely demonstrated both in vivo and in vitro that aberrant metal ion metabolism can lead to the development and/or worsening of several neurological disorders. In this chapter, we will focus recent biophysical findings on β-amyloid structural modifications triggered by metal ions and we will provide insights into the biological consequences of these phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

Aβ:

β-amyloid

BBB:

Blood–brain barrier

ESI-MS:

Electrospray ionisation mass spectrometry

β-APP:

β-amyloid precursor protein

τ:

τ (tau) protein

References

  1. Kopito RR, Ron D (2000) Conformational disease. Nat Cell Biol 2:E207–E209

    Article  PubMed  CAS  Google Scholar 

  2. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344

    Article  PubMed  CAS  Google Scholar 

  3. Yin YI, Bassit B, Zhu L, Yang X, Wang C et al (2007) γ-Secretase substrate concentration modulates the Aβ42/Aβ40 ratio. J Biol Chem 282:23639–23644

    Article  PubMed  CAS  Google Scholar 

  4. Zhang Y, Thompson R, Zhang H, Xu H (2011) APP processing in Alzheimer’s disease. Mol Brain 4:3

    Article  PubMed  CAS  Google Scholar 

  5. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  PubMed  CAS  Google Scholar 

  6. Wilquet V, Strooper BD (2004) Amyloid-β precursor protein processing in neurodegeneration. Curr Opin Neurobiol 14:582–588

    Article  PubMed  CAS  Google Scholar 

  7. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  PubMed  CAS  Google Scholar 

  8. Sakono M, Zako T (2010) Amyloid oligomers: formation and toxicity of Aβ oligomers. FEBS J 277:1348–1358

    Article  PubMed  CAS  Google Scholar 

  9. Zatta P, Drago D, Bolognin S, Sensi SL (2009) Alzheimer’s disease, metal ions and metal homeostatic therapy. Trends Pharmacol Sci 30:346–355

    Article  PubMed  CAS  Google Scholar 

  10. Yumoto S, Kakimi S, Ohsaki A, Ishikawa A (2009) Demonstration of aluminum in amyloid fibers in the cores of senile plaques in the brains of patients with Alzheimer’s disease. J Inorg Biochem 103:1579–1584

    Article  PubMed  CAS  Google Scholar 

  11. Bolognin S, Zatta P (2011) In: Milardi D, Rizzarelli E (eds) Neurodegeneration, Royal Society of Chemistry, Cambridge

    Google Scholar 

  12. Yokel RA (2002) Brain uptake, retention, and efflux of aluminum and manganese. Environ Health Perspect 110:699–704

    Article  PubMed  CAS  Google Scholar 

  13. Tomljenovic L (2011) Aluminum and Alzheimer’s disease: after a century of controversy, is there a plausible link? J Alzheimers Dis 23:567–598

    PubMed  CAS  Google Scholar 

  14. Banks WA, Niehoff ML, Drago D, Zatta P (2006) Aluminum complexing enhances amyloid beta protein penetration of blood-brain barrier. Brain Res 116(1):215–221

    Article  Google Scholar 

  15. Bolognin S, Messori L, Drago D, Gabbiani C, Cendron L et al (2011) Aluminum, copper, iron and zinc differentially alter amyloid-Aβ1-42 aggregation and toxicity. Int J Biochem Cell Biol 43:877–885

    Article  PubMed  CAS  Google Scholar 

  16. Chen W, Liao Y, Yu H, Cheng IH, Chen Y (2011) Distinct effects of Zn2+, Cu2+, Fe3+, and Al3+ on amyloid-β stability, oligomerization, and aggregation. J Biol Chem 286:9646–9656

    Article  PubMed  CAS  Google Scholar 

  17. Fasman GD (1996) Aluminum and Alzheimer’s disease: model studies. Coord Chem Rev 149:125–165

    CAS  Google Scholar 

  18. Ricchelli F, Drago D, Filippi B, Tognon G, Zatta P (2005) Aluminum-triggered structural modifications and aggregation of β-amyloids. Cell Mol Life Sci 62:1724–1733

    Article  PubMed  CAS  Google Scholar 

  19. Kawahara M, Kato-Negishi M (2011) Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. Int J Alzheimers Dis 2011:276393

    PubMed  Google Scholar 

  20. Martin RB (1992) Aluminum speciation in biology. Ciba Found Symp 169:5–18, discussion 18–25

    PubMed  Google Scholar 

  21. House E, Collingwood J, Khan A, Korchazkina O, Berthon G et al (2004) Aluminum, iron, zinc and copper influence the in-vitro formation of amyloid fibrils of Aβ42 in a manner which may have consequences for metal chelation therapy in Alzheimer’s disease. J Alzheimers Dis 6:291–301

    PubMed  CAS  Google Scholar 

  22. Hureau C, Faller P (2009) Aβ-mediated ROS production by Cu ions: structural insights, mechanisms and relevance to Alzheimer’s disease. Biochimie 91:1212–1217

    Article  PubMed  CAS  Google Scholar 

  23. Hung Y, Bush A, Cherny R (2010) Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem 15:61–76

    Article  PubMed  CAS  Google Scholar 

  24. Smith DG, Cappai R, Barnham KJ (2007) The redox chemistry of the Alzheimer’s disease amyloid β peptide. Biochim Biophys Acta 1768:1976–1990

    Article  PubMed  CAS  Google Scholar 

  25. Smith DP, Ciccotosto GD, Tew DJ, Fodero-Tavoletti MT, Johanssen T et al (2007) Concentration dependent Cu2+-induced aggregation and dityrosine formation of the Alzheimer’s disease amyloid-β peptide. Biochemistry 46:2881–2891

    Article  PubMed  CAS  Google Scholar 

  26. Tougu V, Karafin A, Zovo K, Chung RS, Howells C et al (2009) Zn(II)- and Cu(II)-induced non-fibrillar aggregates of amyloid-β1-42 peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators. J Neurochem 110:1784–1795

    Article  PubMed  CAS  Google Scholar 

  27. Faller P (2009) Copper and zinc binding to amyloid-β: coordination, dynamics, aggregation, reactivity and metal-ion transfer. ChemBioChem 10:2837–2845

    Article  PubMed  CAS  Google Scholar 

  28. Hong L, Carducci TM, Bush WD, Dudzik CG, Millhauser GL et al (2010) Quantification of the binding properties of Cu2+ to the amyloid β peptide: coordination spheres for human and rat peptides and implication on Cu2+-induced aggregation. J Phys Chem B 114:11261–11271

    Article  PubMed  CAS  Google Scholar 

  29. Eury H, Bijani C, Faller P, Hureau C (2011) Copper(II) coordination to amyloid β: murine versus human peptide. Angew Chem Int Ed Engl 50:901–905

    Article  PubMed  CAS  Google Scholar 

  30. Miller Y, Ma B, Nussinov R (2010) Polymorphism in Alzheimer Aβ amyloid organization reflects conformational selection in a rugged energy landscape. Chem Rev 110:4820–4838

    Article  PubMed  CAS  Google Scholar 

  31. Miller Y, Ma B, Nussinov R (2010) Zinc ions promote Alzheimer Aβ aggregation via population shift of polymorphic states. Proc Natl Acad Sci USA 107:9490–9495

    Article  PubMed  CAS  Google Scholar 

  32. Granzotto A, Bolognin S, Scancar J, Milacic R, Zatta P (2011) β-Amyloid toxicity increases with hydrophobicity in the presence of metal ions. Monats Chem 142:421–430

    Article  CAS  Google Scholar 

  33. Suwalsky M, Bolognin S, Zatta P (2009) Interaction between Alzheimer’s amyloid-β and amyloid-β-metal complexes with cell membranes. J Alzheimers Dis 17:81–90

    PubMed  CAS  Google Scholar 

  34. Curtain CC, Ali F, Volitakis I, Cherny RA, Norton RS et al (2001) Alzheimer’s disease amyloid-β binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide-dismutase-like subunits. J Biol Chem 276:20466–20473

    Article  PubMed  CAS  Google Scholar 

  35. Lin C, Huang H, Jiang Z (2010) Cu(II) interaction with amyloid-β peptide: a review of neuroactive mechanisms in AD brains. Brain Res Bull 82:235–242

    Article  PubMed  CAS  Google Scholar 

  36. Yang CA, Chen YH, Ke SC, Chen YR, Huang HB, Lin TH, Chen YC (2010) Correlation of copper interaction, copper-driven aggregation, and copper-driven H2O2 formation with Aβ40 conformation. Int J Alzheimers Dis 2011:607861

    PubMed  Google Scholar 

  37. Pedersen JT, Ostergaard J, Rozlosnik N, Gammelgaard B, Heegaard NHH (2011) Cu(II) mediates kinetically distinct, non-amyloidogenic aggregation of amyloid-β peptides. J Biol Chem 286:26952–26963

    Article  PubMed  CAS  Google Scholar 

  38. Alì-Torres J, Rodriguez-Santiago L, Sodupe M, Rauk A (2011) Structures and stabilities of Fe2+/3+ complexes relevant to Alzheimer’s disease: An ab-initio study. J Phys Chem A 115(45):12523–12530

    Article  PubMed  Google Scholar 

  39. Liu B, Moloney A, Meehan S, Morris K, Thomas SE et al (2011) Iron promotes the toxicity of amyloid β peptide by impeding its ordered aggregation. J Biol Chem 286:4248–4256

    Article  PubMed  CAS  Google Scholar 

  40. Sensi SL, Paoletti P, Bush AI, Sekler I (2009) Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 10:780–791

    Article  PubMed  CAS  Google Scholar 

  41. Corona C, Pensalfini A, Frazzini V, Sensi SL (2011) New therapeutic targets in Alzheimer’s disease: brain deregulation of calcium and zinc. Cell Death Dis 2:e176

    Article  PubMed  CAS  Google Scholar 

  42. Nair NG, Perry G, Smith MA, Reddy VP (2010) NMR studies of zinc, copper, and iron binding to histidine, the principal metal-ion-complexing site of amyloid-β peptide. J Alzheimers Dis 20:57–66

    PubMed  CAS  Google Scholar 

  43. Syme CD, Viles JH (2006) Solution 1H-NMR investigation of Zn2+ and Cd2+ binding to amyloid-β peptide (Aβ) of Alzheimer’s disease. Biochim Biophys Acta 1764:246–256

    Article  PubMed  CAS  Google Scholar 

  44. Faller P, Hureau C (2009) Bioinorganic chemistry of copper and zinc ions coordinated to amyloid-β peptide. Dalton Trans 7:1080–1094

    Article  PubMed  Google Scholar 

  45. Behl C (1994) Hydrogen peroxide mediates amyloid β protein toxicity. Cell 77:817–827

    Article  PubMed  CAS  Google Scholar 

  46. Duce JA, Tsatsanis A, Cater MA, James SA, Robb E et al (2010) Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell 142:857–867

    Article  PubMed  CAS  Google Scholar 

  47. Zatta P, Kiss T, Suwalsky M, Berthon G (2002) Aluminum(III) as a promoter of cellular oxidation. Coord Chem Rev 228:271–284

    Article  CAS  Google Scholar 

  48. Ittner LM, Gotz J (2011) Amyloid-β and tau – a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12:65–72

    Article  PubMed  CAS  Google Scholar 

  49. Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM et al (2011) Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci 31:6627–6638

    Article  PubMed  CAS  Google Scholar 

  50. Lovell M (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158:47–52

    Article  PubMed  CAS  Google Scholar 

  51. Frederickson CJ, Koh J, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    Article  PubMed  CAS  Google Scholar 

  52. Granzotto A, Zatta P (2011) Resveratrol acts not through anti-aggregative pathways, but mainly via its scavenging properties against Aβ and Aβ-metal complex toxicity. PLoS One 6:e21565

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Zatta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Granzotto, A., Zatta, P. (2012). Metal ions and beta amyloid: conformational modifications and biological aspects. In: Linert, W., Kozlowski, H. (eds) Metal Ions in Neurological Systems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1001-0_7

Download citation

Publish with us

Policies and ethics