Skip to main content

Application of the Thermodynamical Theory of Elasto-Viscoplasticity in Modern Manufacturing Processes

  • Chapter
Damage Mechanics and Micromechanics of Localized Fracture Phenomena in Inelastic Solids

Part of the book series: CISM Courses and Lectures ((CISM,volume 525))

  • 1527 Accesses

Abstract

The main objective of the lecture is to show broad application of the thermodynamic theory of elasto-viscoplasicity for the description of important problems in modern manufacturing processes, and particularly for meso-, micro-, and nano-mechanical issues. This description is particularly needed for the investigation by using the numerical methods how to avoid unexpected plastic strain localization and localized fracture phenomena in new manufacturing technology.

In the first part the development of thermo-elasto-viscoplastic constitutive model of a material which takes into consideration the induced anisotropy effects as well as observed contribution to strain rate effects generated by microshear banding is presented.

The model is developed within the thermodynamic framework of a unique, covariance constitutive structure with a finite set of the internal state variables. A set of internal state variables consists of one scalar and two tensors, namely the equivalent inelastic deformation ∈p, the second order microdamage tensor ξ with the physical interpretation that (ξ : ξ)1/2 = ξ defines the volume fraction porosity and the residual stress tensor (the back stress) α. The equivalent inelastic deformation ∈p describes the dissipation effects generated by viscoplastic flow phenomena, the microdamage tensor ξ takes into account the anisotropic intrinsic microdamage mechanisms on internal dissipation and the back stress tensor α aims at the description of dissipation effects caused by the second kind of induce anisotropy approximated by the kinematic hardening mechanism.

To describe the contribution to strain rate effects generated by microshear banding we propose to introduce certain scalar function which affects the relaxation time T m in the viscoplastic flow rule. The relaxation time is used as a regularization parameter. Fracture criterion based on the evolution of the anisotropic intrinsic microdamage is formulated. The fundamental features of the proposed constitutive theory have been carefully discussed.

The objective of the second part is to discuss very efficient procedure of the numerical investigation of localized fracture in inelastic solids generated by impact-loaded adiabatic processes. Particular attention is focused on the proper description of a ductile mode of fracture propagating along the shear band for high impact velocities. This procedure of investigation is based on utilization the finite difference and finite element methods for regularized thermo-elastoviscoplastic model of damaged material.

Particular problems have been considered as follows:

  1. (i)

    Localization and localized fracture phenomena in inelastic solids under cyclic dynamic loadings;

  2. (ii)

    Numerical analysis of macrocrack propagation along a bimaterial interface under dynamic loadings processes;

  3. (iii)

    Numerical investigation of dynamic shear bands in inelastic solids as a problem of mesomechanics;

  4. (iv)

    Numerical investigation of localized fracture phenomena in inelastic solids generated by impact-loaded adiabatic processes.

The physical and experimental motivation for each problem have been presented. The identification procedure for the material functions and constants involved in the constitutive equations is developed basing on the experimental observations.

Qualitative comparison of numerical results with experimental observation data has been presented. The numerical results obtained have proven the usefulness of the thermo-elasto-viscoplastic theory in the investigation of dynamic shear band propagations and localized fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, R., Marsden, J.E. (1978) Foundations of Mechanics, Second Edition, Addison-Wesley, Reading Mass., 1978.

    Google Scholar 

  • Abraham, R., Marsden, J.E., Ratiu, T. (1988) Manifolds, Tensor Analysis and Applications, Springer, Berlin 1988.

    Book  Google Scholar 

  • Agah-Tehrani, A., Lee, E.H., Malett, R.L., Onat, E.T. (1987) The theory of elastic-plastic deformation at finite strain with induced anisotropy modelled isotropic-kinematic hardening, J. Mech. Phys. Solids 35, 43–60.

    Article  Google Scholar 

  • Armstrong, P.J., Frederick, C.O. (1966) A mathematical representation of the multiaxial Baushinger effect, CEGB Report RD/B/ N731, Central Electricity Generating Board.

    Google Scholar 

  • Auricchio, F., Taylor, R.L. (1995) Two material models for cyclic plasticity models: Nonlinear kinematic hardening and generalized plasticity, Int. J. Plasticity 11, 65–98.

    Article  Google Scholar 

  • Auricchio, F., Taylor, R.L., Lubliner, J. (1992) Application of a return map algorithm to plasticity models, in D.R.J. Owen and E. Onate (eds.), COMPLAS Computational Plasticity: Fundamentals and Applications, Barcelona, pp. 2229–2248.

    Google Scholar 

  • Barbee, T.W., Seaman, L., Crewdson, R., Curran, D. (1972) Dynamic fracture criteria for ductile and brittle metals, J. Mater. 7, 393–401.

    Article  Google Scholar 

  • Bassani, J.L. (1994) Plastic flow of crystals, Adv. Appl. Mech. 30, 191–258.

    Article  Google Scholar 

  • Boehler, J.P. (Ed.) (1990) Yielding, Damage, and Failure of Anisotropic Solids; Proc. IUTAM/ICM Symposium, Villard-de Lans, 24–28 August 1987, Mech. Eng. Public. Limited, London 1990.

    Google Scholar 

  • Campbell, J.D., Ferguson, W.G. (1970) The temperature and strain-rate dependence of the shear strength of mild steel, Phil. Mag. 81, 63–82.

    Article  Google Scholar 

  • Chaboche, J.L. (1986) Time — independent constitutive theories for cyclic plasticity, Int. J. Plasticity 2, 149–188.

    Article  Google Scholar 

  • Chakrabarti A.K., Spretnak J.W. (1975) Instability of plastic flow in the direction of pure shear. Metallurgical Transactions 6A, 733–747.

    Google Scholar 

  • Chang Y.W., Asaro, R.J. (1980) Lattice rotations and shearing in crystals, Arch. Mech. 32, 369–388.

    CAS  Google Scholar 

  • Chi, Y.C., Lee, S.H., Cho, K., Duffy, J. (1988) The effects of tempering and test temperatures on the dynamic fracture initiation behaviour of on AISI 4340 VAR steel. Brown University Technical Report, August.

    Google Scholar 

  • Cho, K., Chi, Y.C., Duffy, J. (1988) Microscopic observations of adiabatic shear bands in three different steels. Brown University Report No DAAL03-88-K-0015/3, September.

    Google Scholar 

  • Coleman, B.D., Noll, W. (1963) The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rational Mech. Anal. 13, 167–178.

    Article  Google Scholar 

  • Duszek, M.K., Perzyna, P. (1991b) The localization of plastic deformation in thermoplastic solids, Int. J. Solids Structures 27, 1419–1443.

    Article  Google Scholar 

  • Duszek-Perzyna, M.K., Korbel, K., Perzyna, P. (1997) Adiabatic shear band localization in single crystals under dynamic loading processes, Arch. Mechanics 49, 1069–1090.

    CAS  Google Scholar 

  • Duszek-Perzyna, M.K., Perzyna, P. (1993) Adiabatic shear band localization in elastic-plastic single crystals. Int. J. Solids Structures 30(1), 61–89.

    Article  Google Scholar 

  • Duszek-Perzyna, M.K., Perzyna, P. (1994) Analysis of the influence of different effects on criteria for adiabatic shear band localization in inelastic solids, in: Material Instabilities: Theory and Applications, ASME Congress, Chicago, 9–11 November 1994 (Eds. R.C. Batra and H.M. Zbib), AMD-Vol. 183/MD-Vol.50, ASME, New York, 1994, pp. 59–85.

    Google Scholar 

  • Duszek-Perzyna, M.K., Perzyna, P. (1995) Acceleration waves in analysis of adiabatic shear band localization, in: Nonlinear Waves in Solids, Proc. IUTAM Symposium, August 15–20, 1993, Victoria, Canada; J.L. Wegner and F.R. Norwood [Eds.], pp. 128–135, ASME Book No AMR 137, 1995.

    Google Scholar 

  • Duszek-Perzyna, M.K., Perzyna, P. (1996) Adiabatic shear band localization of inelastic single crystals in symmetric double slip process, Archive of Applied Mechanics 66, 369–384.

    Article  Google Scholar 

  • Duszek-Perzyna, M.K., Perzyna, P. (1998) Analysis of anisotropy and plastic spin effects on localization phenomena. Arch. Appl. Mechanics 68, 352–374.

    Article  Google Scholar 

  • Follansbee, P.S. (1986) Metallurgical Applications of Shock — Wave and High-Strain-Rate Phenomena, (Murr LE, Staudhammer KP, Meyeres MA, eds.), pp. 451–480, Marcel Dekker, New York, 1986.

    Google Scholar 

  • Glema, A., Łodygowski, T., Nowak, Z., Perzyna P., Voyiadjis, G.Z. (2005) Thermo-elasto-viscoplastic model of a material with non-local and anisotropic intrinsic microdamage. McMat 2005, Mechanics and Materials Conference, June 1–3, 2005, Baton Rouge, LA, USA.

    Google Scholar 

  • Glema, A., Łodygowski, T., Perzyna, P. (2000) Interaction of deformation waves and localization phenomena in inelastic solids, Computer Methods in Applied Mechanics and Engineering 183, 123–140.

    Article  Google Scholar 

  • Glema, A., Łodygowski, T., Perzyna, P. (2001) The role of dispersion for the description of strain localization in materials under impact loading, European Conference on Computational Mechanics, June 26–29, Cracow, Poland, 2001.

    Google Scholar 

  • Glema, A., Łodygowski, T., Perzyna, P. (2003) Localization of plastic deformations as a result of wave interaction, CAM&ES 3, 81–91.

    Google Scholar 

  • Glema, A., Łodygowski, T., Perzyna, P. (2004) Numerical investigation of dynamic shear bands in inelastic solids as a problem of mesomechanisc. International Congress of Theoretical and Applied Mechanics, 15–21 August, 2004, Warsaw, Poland.

    Google Scholar 

  • Glema, A., Łodygowski, T., Perzyna, P. (2008) Numerical investigation of dynamic shear bands in inelastic solids as a problem of mesomechanics, Comput. Mech. 41, 219–229.

    Article  Google Scholar 

  • Glema, A., Łodygowski, T., Perzyna, P., Sumelka, W. (2006) Constitutive anizotropy induced by plastic strain localization, 35th Solid Mechanics Conference, Kraków, Poland, Sempember 4–8, 2006.

    Google Scholar 

  • Grebe, H.A., Pak, H.R., Meyers, M.A. (1985) Adiabatic shear band localization in titanium and Ti-6PctAl-4PctV alloy, Met. Trans. 16A, 761–775.

    CAS  Google Scholar 

  • Guduru, P.R., Rosakis, A.J., Ravichandran, G. (2001) Dynamic shear bands: an investigation using high speed optical and infrared diagnostic. Mechanics of Materials 33, 371–402.

    Article  Google Scholar 

  • Gustafsson, B., Kreiss, H.O., Oliger, J. (1995) Time Dependent Problems and Difference Methods, John Wiley, New York.

    Google Scholar 

  • Hughes T.J.R., Kato T. and Marsden J.E. (1977) Well-posed quasilinear second order hyperbolic system with application to nonlinear elastodynamics and general relativity, Arch. Rat. Mech. Anal. 63, 273–294.

    Article  Google Scholar 

  • Hutchinson, J.W. (2000) Plasticity at the micron scale. Int. J. Solids and Structures 37, 225–238.

    Article  Google Scholar 

  • Ionescu, I.R., Sofonea, M. (1993) Functional and Numerical Methods in Viscoplasticity, Oxford.

    Google Scholar 

  • Jaumann, G. (1911) Geschlossenes System physikalischer und chemischer Differentialgesetze. Sitzgsber. Akad. Wiss. Wien (IIa) 120, 385–530.

    Google Scholar 

  • Jia, D., Ramesh, K., Ma, E. (2003) Effects on nanocrystalline and ultrafine grain sizes on constitutive behaviour and shear bands in iron, Acta Materialia 51, 3495–3509.

    Article  CAS  Google Scholar 

  • Johnson, J.N. (1981) Dynamic fracture and spallation in ductile solids, J. Appl. Phys. 52, 2812–2825.

    Article  Google Scholar 

  • Korbel, K., Nowak, Z., Perzyna, P., Peęcherski, R.B. (2006) Viscoplasticity of nanometals based on Burzyński yield condition, 35th Solid Mechanics Conference, Kraków, Poland, Sempember 4–8, 2006

    Google Scholar 

  • Kumar A., Kumble, R.Gg. (1969) Viscous drag on dislocations at high strain rates in copper, J. Appl. Physics 40, 3475–3480.

    Article  CAS  Google Scholar 

  • Lambros, J., Rosakis, A. (1995a) Dynamic decohesion of bimaterials: Experimental observations and failure criteria, Int. J. Solids Structures 32, 2677–2702.

    Article  Google Scholar 

  • Lambros, J., Rosakis, A. (1995b) Shear dominated transonic interfacial crack growth in a binaterial-I. Experimental observations, J. Mech. Phys. Solids 43, 169–188.

    Article  Google Scholar 

  • Lambros, J., Rosakis, A. (1995c) Shear dominated transonic interfacial crack growth in a binaterial-II. Asymptotic fields and favorable velocity regimes, J. Mech. Phys. Solids 43, 189–206.

    Article  Google Scholar 

  • Li, S., Liu, W.-K., Qian, D., Guduru, P.R., Rosakis, A.J. (2001) Dynamic shear band propagation and micro-structure of adiabatic shear band. Comput. Methods Appl. Mech. Engng. 191, 73–92.

    Article  Google Scholar 

  • Lisiecki, L.L., Nelson, D.R., Asaro, R.J. (1982) Lattice rotations, necking and localized deformation in f.c.c. single crystals, Scripta Met. 16, 441–449.

    Article  CAS  Google Scholar 

  • Loret, B. (1983) On the effects of plastic rotation in the finite deformation of anisotropic elastoplastic materials. Mech. Mater. 2, 287–304.

    Article  Google Scholar 

  • Łodygowski, T., Perzyna, P. (1997) Numerical modelling of localized fracture of inelastic solids in dynamic loading processes, Int. J. Num. Meth. Engng. 40, 4137–4158.

    Article  Google Scholar 

  • Łodygowski, T. Perzyna, P. (1997) Localized fracture of inelastic polycrystalline solids under dynamic loading processes, Int. J. Damage Mechanics 6, 364–407.

    Article  Google Scholar 

  • Marsden, J.E., Hughes, T.J.R. (1983) Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs, New York 1983.

    Google Scholar 

  • Mason, J.J., Rosakis, J.A., Ravichandran, R. (1994) On the strain and strain rate dependence of the fraction of plastic work converted to heat: an experimental study using high speed infrared detectors and the Kolsky bar, Mechanics of Materials 17, 135–145.

    Article  Google Scholar 

  • Meyers, H.C. (1994) Dynamic Behaviour of Materials, John Wiley, New York 1994.

    Book  Google Scholar 

  • Meyers, M.A., Aimone, C.T. (1983) Dynamic fracture (spalling) of metals, Prog. Mater. Sci. 28, 1–96.

    Article  CAS  Google Scholar 

  • Meyers, M.A. Mishra, A., Benson, D.J. (2006) Mechanical properties of nanocrystalline materials, Prog. Mater. Sci. 51, 427–556.

    Article  CAS  Google Scholar 

  • Mróz, Z. (1967) On the description of anisotropic workhardening, J. Mech. Phys. Solids 15, 163–175.

    Article  Google Scholar 

  • Needleman, A. (2000) Computational mechanics at the mesoscale. Acta Materialia 48, 105–124.

    Article  CAS  Google Scholar 

  • Needleman, A., Rosakis, A.J. (1999) The effect of bound strength and loading rate on the conditions governing the attainment of intersonic crack growth along interfaces, J. Mech. Phys. Solids 47, 2411–2449.

    Article  Google Scholar 

  • Nemat-Nasser, S. (1992) Phenomenological theories of elastoplasticity and strain localization at high strain rates, Appl. Mech. Rev. 45, S19–S45.

    Article  Google Scholar 

  • Nemes, J.A., Eftis, J. (1993) Constitutive modelling of the dynamic fracture of smooth tensile bars, Int. J. Plasticity 9, 243–270.

    Article  CAS  Google Scholar 

  • Nowak, Z., Perzyna, P., Pęcherski, R.B. (2007) Description of viscoplastic flow accounting for shear banding, Arch. of Metallurgy and Materials 52, 217–222.

    Google Scholar 

  • Oldroyd, J. (1950) On the formulation of rheological equations of state, Proc. R. Soc. Lond. A200, 523–541.

    Google Scholar 

  • Perzyna, P. (1963) The constitutive equations for rate sensitive plastic materials, Quart. Appl. Math. 20, 321–332.

    Google Scholar 

  • Perzyna, P. (1966) Fundamental problems in viscoplasticity, Advances in Applied Mechanics 9, 343–377.

    Article  Google Scholar 

  • Perzyna, P. (1971) Thermodynamic theory of viscoplasticity, Advances in Applied Mechanics 11, 313–354.

    Article  Google Scholar 

  • Perzyna, P. (1977) Coupling of dissipative mechanisms of viscoplastic flow, Arch. Mechanics 29, 607–624.

    CAS  Google Scholar 

  • Perzyna, P. (1980) Modified theory of viscoplasticity. Application to advanced flow and instability phenomena, Arch. Mechanics 32, 403–420.

    Google Scholar 

  • Perzyna, P. (1984) Constitutive modelling of dissipative solids for postcritical behaviour and fracture. ASME J. Eng. Materials and Technology 106, 410–419.

    Article  Google Scholar 

  • Perzyna, P. (1986a) Internal state variable description of dynamic fracture of ductile solids, Int. J. Solids Structures 22, 797–818.

    Article  Google Scholar 

  • Perzyna, P. (1986b) Constitutive modelling for brittle dynamic fracture in dissipative solids, Arch. Mechanics 38, 725–738.

    Google Scholar 

  • Perzyna, P. (1988) Temperature and rate dependent theory of plasticity of crystalline solids, Revue Phys. Appl. 23, 445–459.

    Article  Google Scholar 

  • Perzyna, P. (1994) Instability phenomena and adiabatic shear band localization in thermoplastic flow processes, Acta Mechanica 106, 173–205.

    Article  Google Scholar 

  • Perzyna, P. (1995) Interactions of elastic-viscoplastic waves and localization phenomena in solids, IUTAM Symposium on Nonlinear Waves in Solids, August 15–20, 1993, Victoria, Canada; (Eds. J.L. Wegner and F.R. Norwood), ASME 1995, 114–121.

    Google Scholar 

  • Perzyna, P. (1998) Constitutive modelling of dissipative solids for localization and fracture. In: Localization and Fracture Phenomena in Inelastic Solids (Ed. P. Perzyna), Springer, Wien, New York, pp. 99–242, 1998.

    Google Scholar 

  • Perzyna, P. (2001) Thermo-elasto-viscoplasticity and damage. In: Handbook of Materials Behaviour Models (Ed. J. Lemaitre), Academic Press, New York, pp. 821–834, 2001.

    Chapter  Google Scholar 

  • Perzyna, P. (2002) Thermodynamical theory of inelastic single crystals. Engineering Transactions 50, 107–164.

    Google Scholar 

  • Perzyna, P. (2005) The thermodynamical theory of elasto-viscoplasticity, Engineering Transactions 53, 235–316.

    Google Scholar 

  • Perzyna, P. (2008) The thermodynamical theory of elasto-viscoplasticity accounting for microshear banding and induced anisotropy effects, Mechanics 27, (in print).

    Google Scholar 

  • Perzyna, P., Drabik, A. (1989) Description of micro-damage process by porosity parameter for nonlinear viscoplasticity, Arch. Mechanics 41, 895–908.

    Google Scholar 

  • Perzyna, P., Drabik, A. (2008) Micro-damage mechanism in adiabatic processes, Engineering Transactions (in print).

    Google Scholar 

  • Perzyna, P., Korbel, K. (1996) Analysis of the influence of substructure of crystal on the localization phenomena of plastic deformation, Mechanics of Materials 24, 141–158.

    Article  Google Scholar 

  • Perzyna, P., Korbel, K. (1998) Analysis of the influence of variuos effects on criteria for adiabatic shear band localization in single crystals, Acta Mechanica 129, 31–62.

    Article  Google Scholar 

  • Perzyna P., Voyiadjis, G.Z. (2005) Thermodynamic theory of elasto-viscoplasticity for induced anisotropy effects. McMat 2005, Mechanics and Materials Conference, June 1–3, 2005, Baton Rouge, LA, USA.

    Google Scholar 

  • Pęcherski, R.B. (1998) Macroscopic effects of microshear banding in plasticity of metals, Acta Mechanica 131, 203–224.

    Article  Google Scholar 

  • Prager, W. (1955) The theory of plasticity: A survey of recent achievements, (J. Clayton Lecture), Proc. Inst. Mech. Eng. 169, 41–57.

    Article  Google Scholar 

  • Rashid, M.M., Gray, G.T., Nemat-Nasser, S. (1992) Heterogeneous deformations in copper single crystals at high and low strain rates, Philosophical Magazine A 65, 707–735, 1992.

    Article  CAS  Google Scholar 

  • Richtmyer, R.D. (1978) Principles of Advance Mathematical Physics, Vol. I, Springer, New York.

    Google Scholar 

  • Richtmyer, R.D., Morton, K.W. (1967) Difference Methods for Initial-Value Problems, John Wiley, New York.

    Google Scholar 

  • Ristinmaa, M. (1995) Cyclic plasticity model using one yield surface only, Int. J. Plasticity 11, 163–181.

    Article  Google Scholar 

  • Rosakis, A.J., Ravichandran, G. (2000) Dynamic failure mechanics, Int. J. Solids Structures 37, 331–348.

    Article  Google Scholar 

  • Rosakis, A.J., Samudrala, O., Coker, D. (1998) Cracks faster than the shear wave speed, California Institute of Technology, SM Report 98–17, December 1998.

    Google Scholar 

  • Rosakis, A.J., Samudrala, O., Coker, D. (1999) Cracks faster than the shear wave speed, Science 284, 1337–1340.

    Article  CAS  Google Scholar 

  • Rosenfield, A.R., Hahn, G.T. (1966) Numerical description of the ambient low-temperature, and high-strain rate flow and fracture behaviour of plain carbon steel, Trans. Am. Soc. Metals 59, 962–980.

    CAS  Google Scholar 

  • Seaman, L., Curran, D.R., Shockey, D.A. (1976) J. Appl. Phys. 47, 4814–4820.

    Article  CAS  Google Scholar 

  • Shima, S., Oyane, M. (1976) Plasticity for porous solids, Int. J. Mech. Sci. 18, 285–291.

    Article  Google Scholar 

  • Shockey, D.A., Seaman, L., Curran, D.R. (1973) In: Metallurgical Effects at High Strain Rates, (Eds. R.W. Rohde, B.M. Butcher, J.R. Holland, and C.H. Karnes), Plenum Press, New York 1973, 473.

    Google Scholar 

  • Shockey, D.A., Seaman, L., Curran, D.R. (1985) The microstatistical fracture mechanics approach to dynamic fracture problem, Int. J. Fracture 27, 145–157.

    Article  Google Scholar 

  • Sidey, D., Coffin, L.F. (1979) Low-cycle fatigue damage mechanisms at high temperature, in: Fatigue Mechanisms, Proc. ASTM STP 675 Symposium, Kansas City, Mo., May 1978, (Ed. J.T. Fong), Baltimore, 1979, pp. 528–568.

    Google Scholar 

  • Sluys, L.J. (1992) Wave propagation, localization and dispersion in softening solids. Doctoral thesis, Delft Uniwersity Press, Delft.

    Google Scholar 

  • Spitzig, W.A. (1981) Deformation behaviour of nitrogenated Fe-Ti-Mn and Fe-Ti single crystals, Acta Metall. 29, 1359–1377.

    Article  CAS  Google Scholar 

  • Strang, G., Fix, G.J. (1973) An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  • Taylor, G.I., Quinney, H. (1934) The latent energy remaining in a metal after cold working, Proc. R. Soc. Lond. A143, 307–326.

    Google Scholar 

  • Teodosiu, C., Sidoroff, F. (1976) A theory of finite elastoplasticity of single crystals, Int. J. Engng. Sci. 14, 165–176.

    Article  Google Scholar 

  • Truesdell, C., Noll, W. (1965) The Non-Linear Field Theories of Mechanics, in: Handbuch der Physik III/3, (Ed. S. Flűgge), Springer-Verlag, Berlin 1965.

    Google Scholar 

  • Van der Giessen, E. (1989) Continuum models of large deformation plasticity, Part I: Large deformation plasticity and the concept of a natural reference state, Eur. J. Mech., A/Solids 8, 15.

    Google Scholar 

  • Van der Giessen, E. (1989) Continuum models of large deformation plasticity, Part II: A kinematic hardening model and the concept of a plastically induced orientational structure, Eur. J. Mech., A/Solids 8, 89.

    Google Scholar 

  • Van der Giessen, E. (1991) Micromechanical and thermodynamic aspects of the plastic spin, Int. J. Plasticity 7, 365–386.

    Article  Google Scholar 

  • Voyiadjis, G.Z., Ju, J.-W., Chaboche, J.-L. (1998) (Eds.) Damage Mechanics in Engineering Materials, Elsevier, Amsterdam 1998.

    Google Scholar 

  • Wang, J.-D., Ohno, N. (1991) Two equivalent forms of nonlinear kinematic hardening: application to nonisothermal plasticity, Int. J. Plasticity 7, 637–650.

    Article  CAS  Google Scholar 

  • Wang, W., Huang, Y., Rosakis, A.J., Liu, C. (1998) Effect of elastic mismatch in intersonic crack propagation along a bimaterial interface, Engineering Fracture Mechanics 61, 471–485.

    Article  Google Scholar 

  • Zaremba, S. (1903) Sur une forme perfectionnée de la théorie de la relaxation, Bull. Int. Acad. Sci. Cracovie, 594–614.

    Google Scholar 

  • Zaremba, S. (1903) Le principe des mouvements relatifs et les équations de la mécanique physique, Bull. Int. Acad. Sci. Cracovie, 614–621.

    Google Scholar 

  • Zhou, M., Rosakis, A.J., Ravichandran G. (1996) Dynamic propagating shear band in impact-loaded prenotched plates. I. Experimental investigations of temperature signatures and propagation speed. J. Mech. Phys. Solids 44, 981–1006.

    Article  CAS  Google Scholar 

  • Zhou, M., Ravichandran G., Rosakis, A.J. (1996) Dynamic propagating shear band in impact-loaded prenotched plates. II. Numerical simulations. J. Mech. Phys. Solids 44, 1007–1032.

    Article  CAS  Google Scholar 

  • Ziegler, H. (1959) A modification of Prager’s hardening rule, Quart. Appl. Math. 17, 55–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 CISM, Udine

About this chapter

Cite this chapter

Perzyna, P. (2011). Application of the Thermodynamical Theory of Elasto-Viscoplasticity in Modern Manufacturing Processes. In: Damage Mechanics and Micromechanics of Localized Fracture Phenomena in Inelastic Solids. CISM Courses and Lectures, vol 525. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0427-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0427-9_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0426-2

  • Online ISBN: 978-3-7091-0427-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics