Skip to main content
Log in

Macroscopic effects of micro-shear banding in plasticity of metals

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Mathematical idealization of a micro-shear bands system by means of the theory of singular surfaces of order one, related to a physical model of shear strain-rate produced by active micro-shear bands and a certain averaging procedure over the representative volume element, is studied. Theoretical description of small elastic and large plastic deformations within the framework of a two-surface plasticity model, with the internal yield surface connected to kinematic hardening anisotropy and the external surface related to micro-shear banding, is proposed. The idea of the multiple potential surfaces forming a vertex on the smooth external surface is applied to display the connection with the geometric pattern of micro-shear bands. A new physical insight is given into the linear and nonlinear flow laws, in rates of deformation and stress, known in the theory of plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pęcherski, R. B.: Macroscopic measure of the rate of deformation produced by micro-shear banding. Arch. Mech.49, 385–401 (1997).

    Google Scholar 

  2. Pęcherski, R. B.: Physical and theoretical aspects of large plastic deformations involving shear banding. In: Finite inelastic deformations, Theory and applications, Proc. IUTAM Symposium Hannover, Germany 1991, (Besdo, D., Stein, E., eds.), pp. 167–178. Berlin Heidelberg New York Tokyo: Springer 1992.

    Google Scholar 

  3. Pęcherski, R. B.: Modelling of large plastic deformations based on the mechanism of micro-shear banding. Physical foundations and theoretical description in plane strain. Arch. Mech.44, 563–584 (1992).

    Google Scholar 

  4. Pęcherski, R. B.: Model of plastic flow accounting for the effects of shear banding and kinematic hardening. ZAMM75, 203–204 (1995).

    Google Scholar 

  5. Hill, R.: The essential structure of constitutive laws for metal composites and polycrystals. J. Mech. Phys. Solids15, 779–795 (1967).

    Google Scholar 

  6. Korbel, A.: The mechanism of strain localization in metals. Arch. Metall.35, 177–203 (1990).

    Google Scholar 

  7. Korbel, A.: Mechanical instability of metal substructure — catastrophic plastic flow in single and polycrystals. In: Advances in crystal plasticity (Wilkinson, D. S., Embury, J. D., eds.), pp. 42–86. Canadian Institute of Mining and Metallurgy 1992.

  8. Hatherly, M., Malin, A. S.: Shear bands in deformed metals. Scripta Metall.18, 449–454 (1984).

    Google Scholar 

  9. Dybiec, H.: Private communication.

  10. Pieła, K., Korbel, A.: The effect of shear banding on spatial arrangement of the second phase particles in the aluminum alloy. Mat. Sci. Forum217–222, 1037–1042 (1996).

    Google Scholar 

  11. Duszek, M., Perzyna, P.: The localization of plastic deformation in thermoplastic solids. Int. J. Solids Struct.27, 1419–1443 (1991).

    Google Scholar 

  12. Bai, Y., Dodd, B.: Adiabatic shear localization. Oxford: Pergamon Press 1992.

    Google Scholar 

  13. Nguyen, H. V., Nowacki, W. K.: Simple shear of metal sheets at high strain rates. Arch. Mech.49, 369–384 (1997).

    Google Scholar 

  14. Dodd, B., Bai, Y.: Ductile fracture and ductility with applications to metalworking. London: Academic Press 1987.

    Google Scholar 

  15. Gadaj, S. P., Nowacki, W. K., Pieczyska, E. A.: Changes of temperature during the simple shear test of stainless steel. Arch. Mech.48, 779–788 (1996).

    Google Scholar 

  16. Hill, R.: The mechanics of quasi-static plastic deformation in metals. In: Surveys in mechanics (Batchelor, G. K., Davies, R. M., eds.), pp. 7–31. Cambridge: Cambridge University Press 1956.

    Google Scholar 

  17. Hill, R.: On constitutive macro-variables for heterogeneous solids at finite strain. Proc. R. Soc. London Ser.A 326, 131–147 (1972).

    Google Scholar 

  18. Havner, K. S.: On the mechanics of crystalline solids. J. Mech. Phys. Solids21, 383–394 (1973).

    Google Scholar 

  19. Havner, K. S.: Aspects of theoretical plasticity at finite deformation and large pressure. ZAMP25, 765–781 (1974).

    Google Scholar 

  20. Havner, K. S.: Finite plastic deformation of crystalline solids. Cambridge: Cambridge University Press 1992.

    Google Scholar 

  21. Nemat-Nasser, S., Hori, M.: Micromechanics: overall properties of heterogeneous materials. Amsterdam: North-Holland 1993.

    Google Scholar 

  22. Smith, D. R.: An introduction to continuum mechanics. Dordrecht: Kluwer 1993.

    Google Scholar 

  23. Hill, R.: On the micro-to-macro transition in constitutive analyses of elastoplastic response at finite strain. Math. Proc. Camb. Phil. Soc.95, 481–494 (1984).

    Google Scholar 

  24. Hill, R.: On macroscopic effects of heterogeneity in elastoplastic media at finite strain. Math. Proc. Camb. Phil. Soc.98, 579–590 (1985).

    Google Scholar 

  25. Mandel, J.: Plasticité classique et viscoplasticité. C.I.S.M. Wien New York: Springer 1972.

    Google Scholar 

  26. Mandel, J.: Mécanique des solides anélastiques. — Généralisation dans R9 de la règle du potentiel plastique pour un élément polycrystallin. C. R. Acad. Sc. Paris290 B, 481–484 (1980).

    Google Scholar 

  27. Hill, R., Rice, J. R.: Constitutive analysis of elastic-plastic crystals at arbitrary strain. J. Mech. Phys. Solids20, 401–413 (1972).

    Google Scholar 

  28. Nemat-Nasser, S.: Micromechanically based finite plasticity. In: Plasticity today, modelling, methods and applications (Sawczuk, A., Bianchi, G., eds.), pp. 85–95. London: Elsevier 1985.

    Google Scholar 

  29. Petryk, H.: On constitutive inequalities and bifurcation in elastic-plastic solids with a yield-surface vertex. J. Mech. Phys. Solids37, 265–291 (1989).

    Google Scholar 

  30. Stolz, C.: On relationship between micro and macro scales for particular cases of nonlinear behaviour of heterogeneous media. In: Proc. of IUTAM/ICM Symposium on Yielding, Damage and Failure of Anisotropic Solids (Boehler, J.-P., ed.), pp. 617–628. London: Mechanical Engineering Publications 1990.

    Google Scholar 

  31. Yang, S., Rey, C.: Shear band postbifurcation in oriented copper single crystals. Acta Metall42, 2763–2774 (1994).

    Google Scholar 

  32. Truesdell, C., Toupin, R. A.: The classical field theories. Encyclopaedia of Physics, III/1 (Flügge, S., ed.). Berlin Göttingen Heidelberg: Springer 1960.

    Google Scholar 

  33. Eringen, A. C., Suhubi, E. S.: Elastodynamics. Vol I: Finite motions. New York: Academic Press 1974.

    Google Scholar 

  34. Kosiński, W.: Field singularities and wave analysis in continuum mechanics. Warszawa: PWN — Polish Scientific Publishers and Chichester: Ellis Horwood 1986.

    Google Scholar 

  35. Truesdell, C., Noll, W.: The non-linear field theories of mechanics, Encyclopaedia of Physics, III/3 (Flügge, S., ed.). Berlin Göttingen Heidelberg: Springer 1965.

    Google Scholar 

  36. Mandel, J.: Thermodynamics and plasticity. In: Foundations of continuum thermodynamics (Delgado Domingos, J. J. et al., eds.), pp. 283–304. London: McMillan 1974.

    Google Scholar 

  37. Kleiber, M., Raniecki, B.: Elastic-plastic materials at finite strains. In: Plasticity today, modelling, methods and applications (Sawczuk, A., Bianchi, G., eds.), pp. 3–46. London: Elsevier 1985.

    Google Scholar 

  38. Pęcherski, R. B.: The plastic spin concept and the theory of finite plastic deformations with induced anisotropy. Arch. Mech.40, 807–818 (1988).

    Google Scholar 

  39. Raniecki, B., Mróz, Z.: On the strain-induced anisotropy and texture in rigid-plastic solids. In: Inelastic solids and structures. A. Sawczuk Memorial Volume (Kleiber, M., König, A., eds.), pp. 13–32. Swansea: Pineridge Press 1990.

    Google Scholar 

  40. Cleja-Ţigoiu, S., Soós, E.: Elastoviscoplastic models with relaxed configurations and internal state variables. Appl. Mech. Rev.43, 131–151 (1990).

    Google Scholar 

  41. Besseling, J. F., Van Der Giessen, E.: Mathematical modelling of inelastic deformation. London: Chapman & Hall 1994.

    Google Scholar 

  42. Lee, E. H.: Elastic-plastic deformation at finite strains. J. Appl. Mech.36, 1–6 (1969).

    Google Scholar 

  43. Raniecki, B., Nguyen, H. V.: Isotropic elastic-plastic solids at finite strain and arbitrary pressure. Arch. Mech.36, 687–704 (1984).

    Google Scholar 

  44. Nguyen, H. V.: Constitutive equations for finite deformations of elastic-plastic metallic solids with induced anisotropy. Arch. Mech.44, 585–594 (1992).

    Google Scholar 

  45. Rice, J. R.: Continuum mechanics and thermodynamics of plasticity in relation to microscale deformation mechanics. In: Constitutive equations in plasticity (Argon, A. S., ed.), pp. 23–79. Cambridge/Mass.: MIT Press 1975.

    Google Scholar 

  46. Willis, J. R.: Some constitutive equations applicable to problems of large dynamic plastic deformation. J. Mech. Phys. Solids17, 359–369 (1969).

    Google Scholar 

  47. Hill, R.: Theoretical plasticity of textured aggregates. Math. Proc. Camb. Phil. Soc.85, 179–191 (1979).

    Google Scholar 

  48. Hill, R.: On intrinsic eigenstates in plasticity with generalized variables. Math. Proc. Camb. Phil. Soc.93, 177–189 (1983).

    Google Scholar 

  49. Armstrong, P. J., Frederick, C. O.: A mathematical representation of the multiaxial Bauschinger effect. G.E.G.B. Report RD/B/N 731 1966.

  50. Chaboche, J. L.: Time-independent constitutive theories for cyclic plasticity. Int. J. Plasticity2, 149–188 (1986).

    Google Scholar 

  51. Paulun, J. E., Pęcherski, R. B.: On the relation for plastic spin. Arch. Appl. Mech.62, 386–393 (1992).

    Google Scholar 

  52. Oliferuk, W., Korbel, A., Grabski, M. W.: Mode of deformation and the rate of energy storage during uniaxial tensile deformation of austenitic steel. Mat. Sci. Eng.A 220, 123–128 (1966).

    Google Scholar 

  53. Christoffersen, J., Hutchinson, J. W.: A class of phenomenological corner theories of plasticity. J. Mech. Phys. Solids27, 465–487 (1979).

    Google Scholar 

  54. Mróz, Z.: Non-associated flow laws in plasticity. J. Méc.2, 21–42 (1963).

    Google Scholar 

  55. Pęcherski, R. B.: A model of plastic flow with an account of micro-shear banding. ZAMM72, T250–254 (1992).

    Google Scholar 

  56. Budiansky, B.: A reassessment of deformation theories of plasticity. J. Appl. Mech.26, 259–264 (1959).

    Google Scholar 

  57. Stören, S., Rice, J. R.: Localized necking in thin sheets. J. Mech. Phys. Solids23, 421–441 (1975).

    Google Scholar 

  58. Ramakrishnan, N., Atluri, S. N.: Simulation of shear band formation in plane strain tension and compression using FEM. Mech. Mat.17, 307–317 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to E. Stein on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pęcherski, R.B. Macroscopic effects of micro-shear banding in plasticity of metals. Acta Mechanica 131, 203–224 (1998). https://doi.org/10.1007/BF01177225

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01177225

Keywords

Navigation