Skip to main content

Blocking Cerebral Lymphatic Drainage Deteriorates Cerebral Oxidative Injury in Rats with Subarachnoid Hemorrhage

  • Conference paper
Early Brain Injury or Cerebral Vasospasm

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 110/2))

Abstract

Substances and fluid in the brain and subarachnoid spaces may be drained into extracranial lymphatics. This study aimed to investigate the possible role of cerebral lymphatic drainage in the process of cerebral injury following subarachnoid hemorrhage (SAH). Wistar rats were divided into non-SAH, SAH, and SAH plus cervical lymphatic blockage (SAH + CLB) groups. Autologous arterial hemolysate was injected into rats’ cisterna magna to induce SAH. At time of 24 and 72 h after SAH, the rats were sacrificed for serum lactate dehydrogenase (LDH) activity, brain tissue superoxide dismutase (SOD) activity, and brain tissue malonaldehyde (MDA) content detection. It was found that serum LDH activity increased in rats of SAH group comparing with non-SAH group. SAH also resulted in decreased brain tissue SOD activity and increased brain tissue MDA content. In rats of SAH + CLB group, the increase of serum LDH activity was to a lager extent. Meanwhile, brain tissue SOD activity decreased and MDA content increased to a lager extent, as compared with SAH group. It was concluded that blockage of cerebral lymphatic drainage deteriorates cerebral oxidative injury after SAH, indicating cerebral lymphatic drainage may exert intrinsic protective effects against cerebral injury following SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cosar M, Eser O, Fidan H, Sahin O, Buyukbas S, Ela Y, et al. The neuroprotective effect of dexmedetomidine in the hippocampus of rabbits after subarachnoid hemorrhage. Surg Neurol. 2009;71:54–59.

    Article  PubMed  Google Scholar 

  2. Guo Y, Chen ZW. DDPH: improving cognitive deficits beyond its alpha 1-adrenoceptor antagonism in chronic cerebral hypoperfused rats. Eur J Pharmacol. 2008;588:178–188.

    Article  PubMed  Google Scholar 

  3. Hunter JV, Batchelder KF, Lo EH, Wolf GL. Imaging techniques for in vivo quantitation of extracranial lymphatic drainage of the brain. Neuropathol Appl Neurobiol. 1995;21:185–188.

    Article  PubMed  CAS  Google Scholar 

  4. Johnston M, Zakharov A, Koh L, Armstrong D. Subarachnoid injection of Microfil reveals connections between cerebrospinal fluid and nasal lymphatics in the non-human primate. Neuropathol Appl Neurobiol. 2005;31:632–640.

    Article  PubMed  CAS  Google Scholar 

  5. Karnchanapandh K. Effect of increased intracranial pressure on cerebral vasospasm in SAH. Acta Neurochir Suppl. 2008;102: 307–310.

    Article  PubMed  Google Scholar 

  6. Kolias AG, Sen J, Belli A. Pathogenesis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage: putative mechanisms and novel approaches. J Neurosci Res. 2009;87:1–11.

    Article  PubMed  CAS  Google Scholar 

  7. Lin CL, Winardi W, Jeng AY, Kwan AL. Endothelin-converting enzyme inhibitors for the treatment of subarachnoid hemorrhage-induced vasospasm. Neurol Res. 2006;28:721–729.

    Article  PubMed  CAS  Google Scholar 

  8. Liu S, Tang J, Ostrowski RP, Titova E, Monroe C, Chen W, et al. Oxidative stress after subarachnoid hemorrhage in gp91phox knockout mice. Can J Neurol Sci. 2007;34:356–361.

    PubMed  Google Scholar 

  9. Muldoon LL, Varallyay P, Kraemer DF, Kiwic G, Pinkston K, Walker-Rosenfeld SL, et al. Trafficking of superparamagnetic iron oxide particles (Combidex) from brain to lymph nodes in the rat. Neuropathol Appl Neurobiol. 2004;30:70–79.

    Article  PubMed  CAS  Google Scholar 

  10. Oddo M, Milby A, Chen I, Frangos S, MacMurtrie E, Maloney-Wilensky E, et al. Hemoglobin concentration and cerebral metabolism in patients with aneurysmal subarachnoid hemorrhage. Stroke 2009;40:1275–1281.

    Article  PubMed  CAS  Google Scholar 

  11. Pluta RM, Hansen-Schwartz J, Dreier J, Vajkoczy P, Macdonald RL, Nishizawa S, et al. Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res. 2009;31:151–58.

    Article  PubMed  CAS  Google Scholar 

  12. Rejdak K, Petzold A, Sharpe MA, Kay AD, Kerr M, Keir G, et al. Cerebrospinal fluid nitrite/nitrate correlated with oxyhemoglobin and outcome in patients with subarachnoid hemorrhage. J Neurol Sci. 2004;219:71–76.

    Article  PubMed  CAS  Google Scholar 

  13. Sun BL, Xia ZL, Yan ZW, Chen YS, Yang MF. Effects of blockade of cerebral lymphatic drainage on cerebral ischemia after middle cerebral artery occlusion in rats. Clin Hemorheol Microcirc. 2000;23:321–325.

    PubMed  CAS  Google Scholar 

  14. Sun BL, Zheng CB, Yang MF, Yuan H, Zhang SM, Wang LX. Dynamic alterations of cerebral pial microcirculation during experimental subarachnoid hemorrhage. Cell Mol Neurobiol. 2009;29:235–241.

    Article  PubMed  Google Scholar 

  15. Wang HJ, Casley-Smith Jr. Drainage of the prelymphatics of the brain via the adventitia of the vertebral artery. Acta Anat (Basel). 1989;134:67–71.

    Article  CAS  Google Scholar 

  16. Weller RO, Djuanda E, Yow HY, Carare RO. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 2009;117:1–14.

    Article  PubMed  CAS  Google Scholar 

  17. Yousuf S, Atif F, Ahmad M, Hoda N, Ishrat T, Khan B, et al. Resveratrol exerts its neuroprotective effect by modulating mitochondrial dysfunctions and associated cell death during cerebral ischemia. Brain Res. 2009;1250:242–253.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Grants were provided by the National Natural Science Foundation of China (No. 30670724, No. 30570651, No. 30770759), Natural Science Foundation of Shandong China (No. Y2007C014), Natural Medicine Research Foundation of Shandong, China (No. 2005–231), Scientific Research Foundation of Shandong Education Department, China (J05L10), and High-ranking Medical Scientist Foundation of Shandong, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-liang Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this paper

Cite this paper

Sun, Bl. et al. (2011). Blocking Cerebral Lymphatic Drainage Deteriorates Cerebral Oxidative Injury in Rats with Subarachnoid Hemorrhage. In: Feng, H., Mao, Y., Zhang, J.H. (eds) Early Brain Injury or Cerebral Vasospasm. Acta Neurochirurgica Supplements, vol 110/2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0356-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0356-2_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0355-5

  • Online ISBN: 978-3-7091-0356-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics