Skip to main content

Skin architecture and function

  • Chapter
Handbook of Burns

Abstract

From early life until death, a challenge for the wellbeing of all higher organisms is the detection and destruction of invading microorganisms, and the elimination of cells that undergo malignant transformation. This challenge has been met by defence mechanisms of the immune system, the most basic principle of which is the recognition of antigens. The mammalian immune system comprises innate (including factors such as complement, antimicrobial peptides, cytokines, chemokines, and cells like dendritic cells, macrophages, natural killer cells, polymorphonuclear leukocytes) and adaptive (T and B lymphocytes) functional components. Both possess different types of recognition receptors and differ in the speed in which they reply to a potential danger. Even though distinct, the innate and adaptive immune system interact and can influence the extent and type of their counterpart and act in synergy to defend the host against infection, cancer and autoimmunity. For higher organisms, the skin is the first barrier that protects the body from disorders caused by infectious or chemical agents, thermal and electromagnetic radiation, and mechanical trauma and is critically involved in immune reactivity. Immune responses in the skin involve an armamentarium of immune cells and soluble mediators. Professional antigen-presenting cells such as epidermal Langerhans cells and dermal dendritic cells in combination with T cells and other resident cells orchestrate the decision between immunity and tolerance. Such responses in the skin are part of the systemic immune system. Although the components of the epidermis and dermis work in concert to accomplish immune responses in the skin, the focus of this chapter will mainly be on the cells, receptors and mediators of the epidermal (immunologic) unit, the frontline of immune protection against harmful threats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Vassena R, Bilic J, Pekarik V, Tiscornia G, Edel M, Boue S, Izpisua Belmonte JC (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26: 1276–1284

    Article  PubMed  CAS  Google Scholar 

  2. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124: 783–801

    Article  PubMed  CAS  Google Scholar 

  3. Alaibac M, Morris J, Yu R, Chu AC (1992) T lymphocytes bearing the γδ T-cell receptor: a study in normal human skin and pathological skin conditions. Br J Dermatol 127: 458–462

    Article  PubMed  CAS  Google Scholar 

  4. Albanesi C, Scarponi C, Giustizieri ML, Girolomoni G (2005) Keratinocytes in inflammatory skin diseases. Curr Drug Targets Inflamm Allergy 4: 329–334

    Article  PubMed  CAS  Google Scholar 

  5. Alonso L, Fuchs E (2006) The hair cycle. J Cell Sci 119: 391–393

    Article  PubMed  CAS  Google Scholar 

  6. Andrew CE, Andrew NV (1949) Lymphocytes in the normal epidermis of the rat and man. Anat Rec 104: 217–241

    Article  PubMed  CAS  Google Scholar 

  7. Angel CE, Chen CJ, Horlacher OC, Winkler S, John T, Browning J, MacGregor D, Cebon J, Dunbar PR (2009) Distinctive localization of antigen-presenting cells in human lymph nodes. Blood 113: 1257–1267

    Article  PubMed  CAS  Google Scholar 

  8. Angel CE, George E, Brooks AES, Ostrovsky LL, Brown TLA, Dunbar PR (2006) CD1a+ antigen-presenting cells in human dermis respond rapidly to CCR7 ligands. J Immunol 176: 5730–5734

    PubMed  CAS  Google Scholar 

  9. Angel CE, George E, Ostrovsky LL, Dunbar PR (2007 a) Comprehensive analysis of MHC-II expression in healthy human skin. Immunol Cell Biol 85: 363–369

    Article  PubMed  CAS  Google Scholar 

  10. Angel CE, Lala A, Chen CJ, Edgar SG, Ostrovsky LL, Dunbar PR (2007 b) CD14+ antigen-presenting cells in human dermis are less mature than their CD1a+ counterparts. Int Immunol 19: 1271–1279

    Article  PubMed  CAS  Google Scholar 

  11. Annes JP, Munger JS, Rifkin DB (2003) Making sense of latent TGFbeta activation. J Cell Sci 116: 217–224

    Article  PubMed  CAS  Google Scholar 

  12. Asahina A, Tamaki K (2006) Role of Langerhans cells in cutaneous protective immunity: is the reappraisal necessary? J Dermatol Sci 44: 1–9

    Article  PubMed  CAS  Google Scholar 

  13. Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, Engel J, Engvall E, Hohenester E, Jones JC, Kleinman HK, Marinkovich MP, Martin GR, Mayer U, Meneguzzi G, Miner JH, Miyazaki K, Patarroyo M, Paulsson M, Quaranta V, Sanes JR, Sasaki T, Sekiguchi K, Sorokin LM, Talts JF, Tryggvason K, Uitto J, Virtanen I, von de Mark K, Wewer UM, Yamada Y, Yurchenco PD (2005) A simplified laminin nomenclature. Matrix Biol 24: 326–332

    Article  PubMed  CAS  Google Scholar 

  14. Baker BS, Ovigne JM, Powles AV, Corcoran S, Fry L (2003) Normal keratinocytes express Toll-like receptors (TLRs) 1, 2 and 5: modulation of TLR expression in chronic plaque psoriasis. Br J Dermatol 148: 670–679

    Article  PubMed  CAS  Google Scholar 

  15. Ban E, Dupre L, Hermann E, Rohn W, Vendeville C, Quatannens B, Ricciardi-Castagnoli P, Capron A, Riveau G (2000) CpG motifs induce Langerhans cell migration in vivo. Int Immunol 12: 737–745

    Article  PubMed  CAS  Google Scholar 

  16. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu Y-J, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18: 767–811

    Article  PubMed  CAS  Google Scholar 

  17. Bangert C, Friedl J, Stary G, Stingl G, Kopp T (2003) Immunopathologic features of allergic contact dermatitis in humans: participation of plasmacytoid dendritic cells in the pathogenesis of the disease? J Invest Dermatol 121: 1409–1418

    Article  PubMed  CAS  Google Scholar 

  18. Biernaskie J, Paris M, Morozova O, Fagan BM, Marra M, Pevny L, Miller FD (2009) SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells. Cell Stem Cell 5: 610–623

    Article  PubMed  CAS  Google Scholar 

  19. Birbeck MS, Breathnach AS, Everall JD (1961) An electron microscopic study of basal melanocytes and high level clear cells (Langerhans cell) in vitiligo. J Invest Dermatol 37: 51–64

    Google Scholar 

  20. Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10: 207–217

    Article  PubMed  CAS  Google Scholar 

  21. Blanpain C, Horsley V, Fuchs E (2007) Epithelial stem cells: turning over new leaves. Cell 128: 445–458

    Article  PubMed  CAS  Google Scholar 

  22. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118: 635–648

    Article  PubMed  CAS  Google Scholar 

  23. Borkowski TA, Letterio JJ, Farr AG, Udey MC (1996) A role for endogenous transforming growth factor b1 in Langerhans cell biology: the skin of transforming growth factor b1 null mice is devoid of epidermal Langerhans cells. J Exp Med 184: 2417–2422

    Article  PubMed  CAS  Google Scholar 

  24. Bos JD, de Boer OJ, Tibosch E, Das PK, Pals ST (1993) Skin-homing T lymphocytes: detection of cutaneous lymphocyte-associated antigen (CLA) by HECA-452 in normal human skin. Arch Dermatol Res 285: 179–183

    Article  PubMed  CAS  Google Scholar 

  25. Bos JD, Zonneveld I, Das PK, Krieg SR, van der Loos CM, Kapsenberg ML (1987) The skin immune system (SIS): distribution and immunophenotype of lymphocyte subpopulations in normal human skin. J Invest Dermatol 88: 569–573

    Article  PubMed  CAS  Google Scholar 

  26. Boulais N, Misery L (2007) Merkel cells. J Am Acad Dermatol 57: 147–165

    Article  PubMed  Google Scholar 

  27. Boyman O, Conrad C, Tonel G, Gilliet M, Nestle FO (2007) The pathogenic role of tissue-resident immune cells in psoriasis. Trends Immunol 28: 51–57

    Article  PubMed  Google Scholar 

  28. Boyman O, Hefti HP, Conrad C, Nickoloff BJ, Suter M, Nestle FO (2004) Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-a. J Exp Med 199: 731–736

    Article  PubMed  CAS  Google Scholar 

  29. Braun KM, Niemann C, Jensen UB, Sundberg JP, Silva-Vargas V, Watt FM (2003) Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development 130: 5241–5255

    Article  PubMed  CAS  Google Scholar 

  30. Bursch LS, Wang L, Igyarto B, Kissenpfennig A, Malissen B, Kaplan DH, Hogquist KA (2007) Identification of a novel population of Langerin+ dendritic cells. J Exp Med 204: 3147–3156

    Article  PubMed  CAS  Google Scholar 

  31. Campbell JJ, Murphy KE, Kunkel EJ, Brightling CE, Soler D, Shen Z, Boisvert J, Greenberg HB, Vierra MA, Goodman SB, Genovese MC, Wardlaw AJ, Butcher EC, Wu L (2001) CCR7 expression and memory T cell diversity in humans. J Immunol 166: 877–884

    PubMed  CAS  Google Scholar 

  32. Charbonnier AS, Kohrgruber N, Kriehuber E, Stingl G, Rot A, Maurer D (1999) Macrophage inflammatory protein 3alpha is involved in the constitutive trafficking of epidermal Langerhans cells. J Exp Med 190: 1755–1768

    Article  PubMed  CAS  Google Scholar 

  33. Cheng Chew SB, Leung PY (1994) Ultrastructural study of the Merkel cell and its expression of met-enkephalin immunoreactivity during fetal and postnatal development in mice. J Anat 185: 511–520

    Google Scholar 

  34. Clark RA (2010) Skin-resident T cells: the ups and downs of on site immunity. J Invest Dermatol 130: 362–370

    Article  PubMed  CAS  Google Scholar 

  35. Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K, Dowgiert RK, Kupper TS (2006 a) The vast majority of CLA+ T cells are resident in normal skin. J Immunol 176: 4431–4439

    PubMed  CAS  Google Scholar 

  36. Clark RA, Chong BF, Mirchandani N, Yamanaka K, Murphy GF, Dowgiert RK, Kupper TS (2006 b) A novel method for the isolation of skin resident T cells from normal and diseased human skin. J Invest Dermatol 126: 1059–1070

    Article  PubMed  CAS  Google Scholar 

  37. Clark RA, Huang SJ, Murphy GF, Mollet IG, Hijnen D, Muthukuru M, Schanbacher CF, Edwards V, Miller DM, Kim JE, Lambert J, Kupper TS (2008) Human squamous cell carcinomas evade the immune response by downregulation of vascular E-selectin and recruitment of regulatory T cells. J Exp Med 205: 2221–2234

    Article  PubMed  CAS  Google Scholar 

  38. Clark RA, Kupper TS (2007) IL-15 and dermal fibroblasts induce proliferation of natural regulatory T cells isolated from human skin. Blood 109: 194–202

    Article  PubMed  CAS  Google Scholar 

  39. Colonna M, Krug A, Cella M (2002) Interferon-producing cells: on the front line in immune responses against pathogens. Curr Opin Immunol 14: 373–379

    Article  PubMed  CAS  Google Scholar 

  40. Conrad C, Boyman O, Tonel G, Tun-Kyi A, Laggner U, de Fougerolles A, Kotelianski V, Gardner H, Nestle FO (2007) Alpha1beta1 integrin is crucial for accumulation of epidermal T cells and the development of psoriasis. Nat Med 13: 836–842

    Article  PubMed  CAS  Google Scholar 

  41. Costin GE, Hearing VJ (2007) Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J 21: 976–994

    Article  PubMed  CAS  Google Scholar 

  42. Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61: 1329–1337

    Article  PubMed  CAS  Google Scholar 

  43. Coulombe PA, Omary MB (2002) ‘Hard’ and’ soft’ principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol 14: 110–122

    Article  PubMed  CAS  Google Scholar 

  44. Cummings RJ, Mitra S, Foster TH, Lord EM (2009) Migration of skin dendritic cells in response to ionizing radiation exposure. Radiat Res 171: 687–697

    Article  PubMed  CAS  Google Scholar 

  45. Curry JL, Qin JZ, Bonish B, Carrick R, Bacon P, Panella J, Robinson J, Nickoloff BJ (2003) Innate immune-related receptors in normal and psoriatic skin. Arch Pathol Lab Med 127: 178–186

    PubMed  CAS  Google Scholar 

  46. Dieu-Nosjean MC, Massacrier C, Homey B, Vanbervliet B, Pin JJ, Vicari A, Lebecque S, Dezutter-Dambuyant C, Schmitt D, Zlotnik A, Caux C (2000) Macrophage inflammatory protein 3alpha is expressed at inflamed epithelial surfaces and is the most potent chemokine known in attracting Langerhans cell precursors. J Exp Med 192: 705–718

    Article  PubMed  CAS  Google Scholar 

  47. Eady RA, McGrath JA, McMillan JR (1994) Ultrastructural clues to genetic disorders of skin: the dermal-epidermal junction. J Invest Dermatol 103: 13S–18S

    Article  PubMed  CAS  Google Scholar 

  48. Ebert LM, Meuter S, Moser B (2006) Homing and function of human skin gammadelta T cells and NK cells: relevance for tumor surveillance. J Immunol 176: 4331–4336

    PubMed  CAS  Google Scholar 

  49. Edele F, Molenaar R, Gutle D, Dudda JC, Jakob T, Homey B, Mebius R, Hornef M, Martin SF (2008) Cutting edge: instructive role of peripheral tissue cells in the imprinting of T cell homing receptor patterns. J Immunol 181: 3745–3749

    PubMed  CAS  Google Scholar 

  50. Eidsmo L, Allan R, Caminschi I, van Rooijen N, Heath WR, Carbone FR (2009) Differential migration of epidermal and dermal dendritic cells during skin infection. J Immunol 182: 3165–3172

    Article  PubMed  CAS  Google Scholar 

  51. Elias PM (2005) Stratum corneum defensive functions: an integrated view. J Invest Dermatol 125: 183–200

    PubMed  CAS  Google Scholar 

  52. Erickson AC, Couchman JR (2000) Still more complexity in mammalian basement membranes. J Histochem Cytochem 48: 1291–1306

    Article  PubMed  CAS  Google Scholar 

  53. Fernandes KJ, Kobayashi NR, Gallagher CJ, Barnabe-Heider F, Aumont A, Kaplan DR, Miller FD (2006) Analysis of the neurogenic potential of multipotent skinderived precursors. Exp Neurol 201: 32–48

    Article  PubMed  Google Scholar 

  54. Fernandes KJ, McKenzie IA, Mill P, Smith KM, Akhavan M, Barnabe-Heider F, Biernaskie J, Junek A, Kobayashi NR, Toma JG, Kaplan DR, Labosky PA, Rafuse V, Hui CC, Miller FD (2004) A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol 6: 1082–1093

    Article  PubMed  CAS  Google Scholar 

  55. Flacher V, Bouschbacher M, Verronese E, Massacrier C, Sisirak V, Berthier-Vergnes O, Saint-Vis B, Caux C, Dezutter-Dambuyant C, Lebecque S, Valladeau J (2006) Human Langerhans cells express a specific TLR profile and differentially respond to viruses and Gram-positive bacteria. J Immunol 177: 7959-7967

    Google Scholar 

  56. Foster CA, Elbe A (1997) Lymphocyte subpopulations of the skin. In: Bos JD (ed) Skin immune system (SIS), 2 edn. CRC Press, Boca Raton New York, pp 85–108

    Google Scholar 

  57. Foster CA, Yokozeki H, Rappersberger K, Koning F, Volc-Platzer B, Rieger A, Coligan JE, Wolff K, Stingl G (1990) Human epidermal T cells predominately belong to the lineage expressing ab T cell receptor. J Exp Med 171: 997–1013

    Article  PubMed  CAS  Google Scholar 

  58. Frelinger JG, Hood L, Hill S, Frelinger JA (1979) Mouse epidermal Ia molecules have a bone marrow origin. Nature 282: 321–323

    Article  PubMed  CAS  Google Scholar 

  59. Fu X, Li H (2009) Mesenchymal stem cells and skin wound repair and regeneration: possibilities and questions. Cell Tissue Res 335: 317–321

    Article  PubMed  Google Scholar 

  60. Fuchs E (1995) Keratins and the skin. Annu Rev Cell Dev Biol 11: 123–153

    Article  PubMed  CAS  Google Scholar 

  61. Fuchs E (2007) Scratching the surface of skin development. Nature 445: 834–842

    Article  PubMed  CAS  Google Scholar 

  62. Fuchs E (2008) Skin stem cells: rising to the surface. J Cell Biol 180: 273–284

    Article  PubMed  CAS  Google Scholar 

  63. Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR (2009) Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol 10: 524–530

    Article  PubMed  CAS  Google Scholar 

  64. Ghaznawie M, Papadimitriou JM, Heenan PJ (1999) The repopulation of murine Langerhans cells after depletion by mild heat injury. Br J Dermatol 141: 206-210

    Google Scholar 

  65. Gingras M, Champigny MF, Berthod F (2007) Differentiation of human adult skin-derived neuronal precursors into mature neurons. J Cell Physiol 210: 498–506

    Article  PubMed  CAS  Google Scholar 

  66. Ginhoux F, Collin MP, Bogunovic M, Abel M, Leboeuf M, Helft J, Ochando J, Kissenpfennig A, Malissen B, Grisotto M, Snoeck H, Randolph G, Merad M (2007) Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. J Exp Med 204: 3133-3146

    Google Scholar 

  67. Ginhoux F, Tacke F, Angeli V, Bogunovic M, Loubeau M, Dai XM, Stanley ER, Randolph GJ, Merad M (2006) Langerhans cells arise from monocytes in vivo. Nat Immunol 7: 265-273

    Google Scholar 

  68. Grim M, Halata Z (2000) Developmental origin of avian Merkel cells. Anat Embryol (Berl) 202: 401–410

    Article  CAS  Google Scholar 

  69. Groh V, Porcelli S, Fabbi M, Lanier LL, Picker LJ, Anderson T, Warnke RA, Bhan AK, Strominger JL, Brenner MB (1989) Human lymphocytes bearing T cell receptor gd are phenotypically diverse and evenly distributed throughout the lymphoid system. J Exp Med 169: 1277–1294

    Article  PubMed  CAS  Google Scholar 

  70. Grone A (2002) Keratinocytes and cytokines. Vet Immunol Immunopathol 88: 1–12

    Article  PubMed  CAS  Google Scholar 

  71. Haeberle H, Fujiwara M, Chuang J, Medina MM, Panditrao MV, Bechstedt S, Howard J, Lumpkin EA (2004) Molecular profiling reveals synaptic release machinery in Merkel cells. Proc Natl Acad Sci USA 101: 14 503-14 508

    Google Scholar 

  72. Halata Z, Grim M, Bauman KI (2003) Friedrich Sigmund Merkel and his “Merkel cell”, morphology, development, and physiology: review and new results. Anat Rec A Discov Mol Cell Evol Biol 271: 225–239

    Article  PubMed  Google Scholar 

  73. Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM (2005) Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 85: 979–1000

    Article  PubMed  CAS  Google Scholar 

  74. Haniffa M, Ginhoux F, Wang XN, Bigley V, Abel M, Dimmick I, Bullock S, Grisotto M, Booth T, Taub P, Hilkens C, Merad M, Collin M (2009) Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. J Exp Med 206: 371–385

    Article  PubMed  CAS  Google Scholar 

  75. Holtmeier W, Kabelitz D (2005) Gammadelta T cells link innate and adaptive immune responses. Chem Immunol Allergy 86: 151–183

    Article  PubMed  CAS  Google Scholar 

  76. Holzmann S, Tripp CH, Schmuth M, Janke K, Koch F, Saeland S, Stoitzner P, Romani N (2004) A model system using tape stripping for characterization of Langerhans cell-precursors in vivo. J Invest Dermatol 122: 1165–1174

    Article  PubMed  CAS  Google Scholar 

  77. Homey B, Alenius H, Muller A, Soto H, Bowman EP, Yuan W, McEvoy L, Lauerma AI, Assmann T, Bunemann E, Lehto M, Wolff H, Yen D, Marxhausen H, To W, Sedgwick J, Ruzicka T, Lehmann P, Zlotnik A (2002) CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med 8: 157-165

    Google Scholar 

  78. Hoogduijn MJ, Gorjup E, Genever PG (2006) Comparative characterization of hair follicle dermal stem cells and bone marrow mesenchymal stem cells. Stem Cells Dev 15: 49–60

    Article  PubMed  CAS  Google Scholar 

  79. Hunt DP, Jahoda C, Chandran S (2009) Multipotent skin-derived precursors: from biology to clinical translation. Curr Opin Biotechnol 20: 522–530

    Article  PubMed  CAS  Google Scholar 

  80. Hunt DP, Morris PN, Sterling J, Anderson JA, Joannides A, Jahoda C, Compston A, Chandran S (2008) A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin. Stem Cells 26: 163–172

    Article  PubMed  CAS  Google Scholar 

  81. Hunt DP, Sajic M, Phillips H, Henderson D, Compston A, Smith K, Chandran S (2010) Origins of gliogenic stem cell populations within adult skin and bone marrow. Stem Cells Dev 19: 1055–1065

    Article  PubMed  CAS  Google Scholar 

  82. Inoue K, Aoi N, Sato T, Yamauchi Y, Suga H, Eto H, Kato H, Araki J, Yoshimura K (2009) Differential expression of stem-cell-associated markers in human hair follicle epithelial cells. Lab Invest 89: 844–856

    Article  PubMed  CAS  Google Scholar 

  83. Ito M, Kizawa K, Hamada K, Cotsarelis G (2004) Hair follicle Stem Cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation 72: 548–557

    Article  PubMed  Google Scholar 

  84. Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327: 291–295

    Article  PubMed  CAS  Google Scholar 

  85. Jahoda CA, Whitehouse J, Reynolds AJ, Hole N (2003) Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages. Exp Dermatol 12: 849–859

    Article  PubMed  Google Scholar 

  86. Jaksits S, Kriehuber E, Charbonnier AS, Rappersberger K, Stingl G, Maurer D (1999) CD34+ cell-derived CD14+ precursor cells develop into Langerhans cells in a TGFbeta 1-dependent manner. J Immunol 163: 4869–4877

    PubMed  CAS  Google Scholar 

  87. Janssens AS, Pavel S, Out-Luiting JJ, Willemze R, de Gruijl FR (2005) Normalized ultraviolet (UV) induction of Langerhans cell depletion and neutrophil infiltrates after artificial UVB hardening of patients with polymorphic light eruption. Br J Dermatol 152: 1268–1274

    Article  PubMed  CAS  Google Scholar 

  88. Jensen KB, Collins CA, Nascimento E, Tan DW, Frye M, Itami S, Watt FM (2009) Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 4: 427–439

    Article  PubMed  CAS  Google Scholar 

  89. Jensen UB, Yan X, Triel C, Woo SH, Christensen R, Owens DM (2008) A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. J Cell Sci 121: 609–617

    Google Scholar 

  90. Jimbow K, Quevedo WC, Jr, Fitzpatrick TB, Szabo G (1976) Some aspects of melanin biology: 1950-1975. J Invest Dermatol 67: 72–89

    Article  PubMed  CAS  Google Scholar 

  91. Joannides A, Gaughwin P, Schwiening C, Majed H, Sterling J, Compston A, Chandran S (2004) Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells. Lancet 364: 172–178

    Article  PubMed  CAS  Google Scholar 

  92. Johnson KO (2001) The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 11: 455–461

    Article  PubMed  CAS  Google Scholar 

  93. Kanitakis J (1998) Immunohistochemistry of normal human skin. Eur J Dermatol 8: 539–547

    PubMed  CAS  Google Scholar 

  94. Kanitakis J (2002) Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol 12: 390–399

    PubMed  Google Scholar 

  95. Kaplan DH, Kissenpfennig A, Clausen BE (2008) Insights into Langerhans cell function from Langerhans cell ablation models. Eur J Immunol 38: 2369–2376

    Article  PubMed  CAS  Google Scholar 

  96. Kaplan DH, Li MO, Jenison MC, Shlomchik WD, Flavell RA, Shlomchik MJ (2007) Autocrine/paracrine TGFbeta1 is required for the development of epidermal Langerhans cells. J Exp Med 204: 2545–2552

    Article  PubMed  CAS  Google Scholar 

  97. Katz SI, Tamaki K, Sachs DH (1979) Epidermal Langerhans cells are derived from cells originating in bone marrow. Nature 282: 324–326

    Article  PubMed  CAS  Google Scholar 

  98. Keene DR, Marinkovich MP, Sakai LY (1997) Immunodissection of the connective tissue matrix in human skin. Microsc Res Tech 38: 394–406

    Article  PubMed  CAS  Google Scholar 

  99. Kimber I, Cumberbatch M, Dearman RJ (2009) Langerhans cell migration: not necessarily always at the center of the skin sensitization universe. J Invest Dermatol 129: 1852–1853

    Article  PubMed  CAS  Google Scholar 

  100. Klechevsky E, Morita R, Liu M, Cao Y, Coquery S, Thompson-Snipes L, Briere F, Chaussabel D, Zurawski G, Palucka AK, Reiter Y, Banchereau J, Ueno H (2008) Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 29: 497–510

    Article  PubMed  CAS  Google Scholar 

  101. Kobayashi N, Nakagawa A, Muramatsu T, Yamashina Y, Shirai T, Hashimoto MW, Ishigaki Y, Ohnishi T, Mori T (1998) Supranuclear melanin caps reduce ultraviolet induced DNA photoproducts in human epidermis. J Invest Dermatol 110: 806–810

    Article  PubMed  CAS  Google Scholar 

  102. Kroeze KL, Jurgens WJ, Doulabi BZ, van Milligen FJ, Scheper RJ, Gibbs S (2009) Chemokine-mediated migration of skin-derived Stem Cells: predominant role for CCL5/RANTES. J Invest Dermatol 129: 1569–1581

    Article  PubMed  CAS  Google Scholar 

  103. Kryczek I, Bruce AT, Gudjonsson JE, Johnston A, Aphale A, Vatan L, Szeliga W, Wang Y, Liu Y, Welling TH, Elder JT, Zou W (2008) Induction of IL-17+ T cell trafficking and development by IFN-gamma: mechanism and pathological relevance in psoriasis. J Immunol 181: 4733–4741

    PubMed  CAS  Google Scholar 

  104. Kummer JA, Broekhuizen R, Everett H, Agostini L, Kuijk L, Martinon F, van Bruggen R, Tschopp J (2007) Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. J Histochem Cytochem 55: 443–452

    Article  PubMed  CAS  Google Scholar 

  105. Kupper TS, Fuhlbrigge RC (2004) Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol 4: 211–222

    Article  PubMed  CAS  Google Scholar 

  106. Lacour JP, Dubois D, Pisani A, Ortonne JP (1991) Anatomical mapping of Merkel cells in normal human adult epidermis. Br J Dermatol 125: 535–542

    Article  PubMed  CAS  Google Scholar 

  107. Lai Y, Di NA, Nakatsuji T, Leichtle A, Yang Y, Cogen AL, Wu ZR, Hooper LV, Schmidt RR, von AS, Radek KA, Huang CM, Ryan AF, Gallo RL (2009) Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med 15: 1377–1382

    Article  PubMed  CAS  Google Scholar 

  108. Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30: 131–141

    Article  PubMed  CAS  Google Scholar 

  109. Lako M, Armstrong L, Cairns PM, Harris S, Hole N, Jahoda CA (2002) Hair follicle dermal cells repopulate the mouse haematopoietic system. J Cell Sci 115: 3967–3974

    Article  PubMed  CAS  Google Scholar 

  110. Langerhans P (1868) Über die Nerven der menschlichen Haut. Virchows Arch 44: 325–337

    Article  Google Scholar 

  111. Larregina AT, Watkins SC, Erdos G, Spencer LA, Storkus WJ, Beer SD, Falo LD, Jr (2001) Direct transfection and activation of human cutaneous dendritic cells. Gene Ther 8: 608–617

    Article  PubMed  CAS  Google Scholar 

  112. Lavoie JF, Biernaskie JA, Chen Y, Bagli D, Alman B, Kaplan DR, Miller FD (2009) Skin-derived precursors differentiate into skeletogenic cell types and contribute to bone repair. Stem Cells Dev 18: 893–906

    Article  PubMed  CAS  Google Scholar 

  113. Leibbrandt A, Penninger JM (2008) RANK/RANKL: regulators of immune responses and bone physiology. Ann N Y Acad Sci 1143: 123–150

    Article  PubMed  CAS  Google Scholar 

  114. Li A, Pouliot N, Redvers R, Kaur P (2004) Extensive tissueregenerative capacity of neonatal human keratinocyte Stem Cells and their progeny. J Clin Invest 113: 390–400

    PubMed  CAS  Google Scholar 

  115. Lucarz A, Brand G (2007) Current considerations about Merkel cells. Eur J Cell Biol 86: 243–251

    Article  PubMed  CAS  Google Scholar 

  116. Lumpkin EA, Bautista DM (2005) Feeling the pressure in mammalian somatosensation. Curr Opin Neurobiol 15: 382–388

    Article  PubMed  CAS  Google Scholar 

  117. Lyle S, Christofidou-Solomidou M, Liu Y, Elder DE, Albelda S, Cotsarelis G (1998) The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle Stem Cells. J Cell Sci 111: 3179–3188

    PubMed  CAS  Google Scholar 

  118. Lysy PA, Smets F, Sibille C, Najimi M, Sokal EM (2007) Human skin fibroblasts: from mesodermal to hepatocyte-like differentiation. Hepatology 46: 1574–1585

    Article  PubMed  CAS  Google Scholar 

  119. Mannik J, Alzayady K, Ghazizadeh S (2010) Regeneration of multilineage skin epithelia by differentiated keratinocytes. J Invest Dermatol 130: 388–397

    Article  PubMed  CAS  Google Scholar 

  120. Maricich SM, Wellnitz SA, Nelson AM, Lesniak DR, Gerling GJ, Lumpkin EA, Zoghbi HY (2009) Merkel cells are essential for light-touch responses. Science 324: 1580–1582

    Article  PubMed  CAS  Google Scholar 

  121. Mattei S, Colombo MP, Melani C, Silvani A, Parmiani G, Herlyn M (1994) Expression of cytokine/growth factors and their receptors in human melanoma and melanocytes. Int J Cancer 56: 853–857

    Article  PubMed  CAS  Google Scholar 

  122. Maytin EV (1992) Differential effects of heat shock and UVB light upon stress protein expression in epidermal keratinocytes. J Biol Chem 267: 23 189–23 196

    CAS  Google Scholar 

  123. McGirt LY, Beck LA (2006) Innate immune defects in atopic dermatitis. J Allergy Clin Immunol 118: 202–208

    Article  PubMed  CAS  Google Scholar 

  124. McInturff JE, Modlin RL, Kim J (2005) The role of tolllike receptors in the pathogenesis and treatment of dermatological disease. J Invest Dermatol 125: 1–8

    Article  PubMed  CAS  Google Scholar 

  125. McKenzie IA, Biernaskie J, Toma JG, Midha R, Miller FD (2006) Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci 26: 6651–6660

    Article  PubMed  CAS  Google Scholar 

  126. McLellan AD, Heiser A, Sorg RV, Fearnley DB, Hart DN (1998) Dermal dendritic cells associated with T lymphocytes in normal human skin display an activated phenotype. J Invest Dermatol 111: 841–849

    Article  PubMed  CAS  Google Scholar 

  127. Medina RJ, Kataoka K, Takaishi M, Miyazaki M, Huh NH (2006) Isolation of epithelial stem cells from dermis by a three-dimensional culture system. J Cell Biochem 98: 174–184

    Article  PubMed  CAS  Google Scholar 

  128. Merad M, Ginhoux F, Collin M (2008) Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 8: 935–947

    Article  PubMed  CAS  Google Scholar 

  129. Merad M, Manz MG, Karsunky H, Wagers A, Peters W, Charo I, Weissman IL, Cyster JG, Engleman EG (2002) Langerhans cells renew in the skin throughout life under steady-state conditions. Nature Immunol 3: 1135–1141

    Article  CAS  Google Scholar 

  130. Miner JH, Yurchenco PD (2004) Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol 20: 255–284

    Article  PubMed  CAS  Google Scholar 

  131. Modlin RL, Kim J, Maurer D, Bangert C, Stingl G (2007) Innate and adaptive immunity in the skin. In: Wolff K, Goldsmith LA, Katz SI, Gilchrest BA, Paller AS, Leffell DJ (eds) Fitzpatrick’s Dermatology in General Medicine, 7 edn, McGraw Hill, New York, pp 95–114

    Google Scholar 

  132. Moll I, Kuhn C, Moll R (1995) Cytokeratin 20 is a general marker of cutaneous Merkel cells while certain neuronal proteins are absent. J Invest Dermatol 104: 910–915

    Article  PubMed  CAS  Google Scholar 

  133. Moll I, Lane AT, Franke WW, Moll R (1990) Intraepidermal formation of Merkel cells in xenografts of human fetal skin. J Invest Dermatol 94: 359–364

    Article  PubMed  CAS  Google Scholar 

  134. Moll I, Moll R (1992) Early development of human Merkel cells. Exp Dermatol 1: 180–184

    Article  PubMed  CAS  Google Scholar 

  135. Moll I, Moll R, Franke WW (1986) Formation of epidermal and dermal Merkel cells during human fetal skin development. J Invest Dermatol 87: 779–787

    Article  PubMed  CAS  Google Scholar 

  136. Moll I, Roessler M, Brandner JM, Eispert AC, Houdek P, Moll R (2005) Human Merkel cells-aspects of cell biology, distribution and functions. Eur J Cell Biol 84: 259–271

    Article  PubMed  CAS  Google Scholar 

  137. Mora JR, Cheng GY, Picarella D, Briskin M, Buchanan N, Von Andrian U (2005) Reciprocal and dynamic control of CD8 T cell homing by dendritic cells from skinand gut-associated lymphoid tissues. J Exp Med 201: 303–316

    Article  PubMed  CAS  Google Scholar 

  138. Morelli AE, Thomson AW (2007) Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol 7: 610–621

    Article  PubMed  CAS  Google Scholar 

  139. Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin JS, Sawicki JA, Cotsarelis G (2004) Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22: 411–417

    Article  PubMed  CAS  Google Scholar 

  140. Morrison KM, Miesegaes GR, Lumpkin EA, Maricich SM (2009) Mammalian Merkel cells are descended from the epidermal lineage. Dev Biol 336: 76–83

    Article  PubMed  CAS  Google Scholar 

  141. Mutyambizi K, Berger CL, Edelson RL (2009) The balance between immunity and tolerance: the role of Langerhans cells. Cell Mol Life Sci 66: 831–840

    Article  PubMed  CAS  Google Scholar 

  142. Myllyharju J, Kivirikko KI (2004) Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet 20: 33–43

    Article  PubMed  CAS  Google Scholar 

  143. Nagao K, Ginhoux F, Leitner WW, Motegi S, Bennett CL, Clausen BE, Merad M, Udey MC (2009) Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions. Proc Natl Acad Sci USA 106: 3312–3317

    Article  PubMed  CAS  Google Scholar 

  144. Narisawa Y, Hashimoto K (1991) Immunohistochemical demonstration of nerve-Merkel cell complex in fetal human skin. J Dermatol Sci 2: 361–370

    Article  PubMed  CAS  Google Scholar 

  145. Nestle FO, Di MP, Qin JZ, Nickoloff BJ (2009) Skin immune sentinels in health and disease. Nat Rev Immunol 9: 679–691

    PubMed  CAS  Google Scholar 

  146. Nestle FO, Zheng XG, Thompson CB, Turka LA, Nickoloff BJ (1993) Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets. J Immunol 151: 6535–6545

    PubMed  CAS  Google Scholar 

  147. Nijhof JG, Braun KM, Giangreco A, van Pelt C, Kawamoto H, Boyd RL, Willemze R, Mullenders LH, Watt FM, De Gruijl FR, van Ewijk W (2006) The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development 133: 3027–3037

    Article  PubMed  CAS  Google Scholar 

  148. Norris A, Todd C, Graham A, Quinn AG, Thody AJ (1996) The expression of the c-kit receptor by epidermal melanocytes may be reduced in vitiligo. Br J Dermatol 134: 299–306

    Article  PubMed  CAS  Google Scholar 

  149. Ochoa MT, Loncaric A, Krutzik SR, Becker TC, Modlin RL (2008) “Dermal dendritic cells” comprise two distinct populations: CD1+ dendritic cells and CD209+ macrophages. J Invest Dermatol 128: 2225–2231

    Article  PubMed  CAS  Google Scholar 

  150. Ohyama M, Terunuma A, Tock CL, Radonovich MF, Pise-Masison CA, Hopping SB, Brady JN, Udey MC, Vogel JC (2006) Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J Clin Invest 116: 249–260

    Article  PubMed  CAS  Google Scholar 

  151. Peiser M, Koeck J, Kirschning CJ, Wittig B, Wanner R (2008) Human Langerhans cells selectively activated via Toll-like receptor 2 agonists acquire migratory and CD4+ T cell stimulatory capacity. J Leukoc Biol 83: 1118–1127

    Article  PubMed  CAS  Google Scholar 

  152. Perreault C, Pelletier M, Landry D, Gyger M (1984) Study of Langerhans cells after allogeneic bone marrow transplantation. Blood 63: 807–811

    PubMed  CAS  Google Scholar 

  153. Potten CS, Booth C (2002) Keratinocyte stem cells: a commentary. J Invest Dermatol 119: 888–899

    Article  PubMed  CAS  Google Scholar 

  154. Poulin LF, Henri S, de BB, Devilard E, Kissenpfennig A, Malissen B (2007) The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. J Exp Med 204: 3119–3131

    Google Scholar 

  155. Renn CN, Sanchez DJ, Ochoa MT, Legaspi AJ, Oh CK, Liu PT, Krutzik SR, Sieling PA, Cheng G, Modlin RL (2006) TLR activation of Langerhans cell-like dendritic cells triggers an antiviral immune response. J Immunol 177: 298–305

    PubMed  CAS  Google Scholar 

  156. Romani N, Clausen BE, Stoitzner P (2010) Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunol Rev 234: 120–141

    Article  PubMed  CAS  Google Scholar 

  157. Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6: 345–352

    Article  PubMed  CAS  Google Scholar 

  158. Salmon JK, Armstrong CA, Ansel JC (1994) The skin as an immune organ. West J Med 160: 146–152

    PubMed  CAS  Google Scholar 

  159. Schaerli P, Ebert L, Willimann K, Blaser A, Roos RS, Loetscher P, Moser B (2004) A skin-selective homing mechanism for human immune surveillance T cells. J Exp Med 199: 1265–1275

    Article  PubMed  CAS  Google Scholar 

  160. Schaerli P, Willimann K, Ebert LM, Walz A, Moser B (2005) Cutaneous CXCL14 targets blood precursors to epidermal niches for Langerhans cell differentiation. Immunity 23: 331–342

    Article  PubMed  CAS  Google Scholar 

  161. Schauber J, Gallo RL (2007) Expanding the roles of antimicrobial peptides in skin: alarming and arming keratinocytes. J Invest Dermatol 127: 510–512

    Article  PubMed  CAS  Google Scholar 

  162. Schröder JM (1999) Epithelial antimicrobial peptides: innate local host response elements. Cell Mol Life Sci 56: 32–46

    Article  PubMed  Google Scholar 

  163. Schuster C, Vaculik C, Fiala C, Meindl S, Brandt O, Imhof M, Stingl G, Eppel W, Elbe-Bürger A (2009) HLADR+ leukocytes acquire CD1 antigens in embryonic and fetal human skin and contain functional antigenpresenting cells. J Exp Med 206: 169–181

    Article  PubMed  CAS  Google Scholar 

  164. Segre JA (2006) Epidermal barrier formation and recovery in skin disorders. J Clin Invest 116: 1150–1158

    Article  PubMed  CAS  Google Scholar 

  165. Sellheyer K, Krahl D (2010) Cutaneous mesenchymal stem cells: current status of research and potential clinical applications. Hautarzt 61: 429–434

    Article  PubMed  CAS  Google Scholar 

  166. Shi CM, Cheng TM (2004) Differentiation of dermisderived multipotent cells into insulin-producing pancreatic cells in vitro. World J Gastroenterol 10: 2550–2552

    PubMed  Google Scholar 

  167. Sidhu GS, Chandra P, Cassai ND (2005) Merkel cells, normal and neoplastic: an update. Ultrastruct Pathol 29: 287–294

    Article  Google Scholar 

  168. Sigmundsdottir H, Butcher EC (2008) Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking. Nat Immunol 9: 981–987

    Article  PubMed  CAS  Google Scholar 

  169. Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N, van de Wetering M, van den Born M, Begthel H, Vries RG, Stange DE, Toftgard R, Clevers H (2010) Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327: 1385–1389

    Article  PubMed  CAS  Google Scholar 

  170. Song PI, Park YM, Abraham T, Harten B, Zivony A, Neparidze N, Armstrong CA, Ansel JC (2002) Human keratinocytes express functional CD14 and toll-like receptor 4. J Invest Dermatol 119: 424–432

    Article  PubMed  CAS  Google Scholar 

  171. Spetz AL, Strominger J, Groh-Spies V (1996) T cell subsets in normal human epidermis. Am J Pathol 149: 665–674

    PubMed  CAS  Google Scholar 

  172. Steinman RM (2007) Dendritic cells: versatile controllers of the immune system. Nat Med 13: 1155–1159

    Article  PubMed  CAS  Google Scholar 

  173. Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449: 419–426

    Article  PubMed  CAS  Google Scholar 

  174. Steinman RM, Hemmi H (2006) Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol 311: 17–58

    Article  PubMed  CAS  Google Scholar 

  175. Stoff A, Rivera AA, Sanjib BN, Moore ST, Michael NT, Espinosa-de-Los-Monteros A, Richter DF, Siegal GP, Chow LT, Feldman D, Vasconez LO, Michael MJ, Stoff-Khalili MA, Curiel DT (2009) Promotion of incisional wound repair by human mesenchymal stem cell transplantation. Exp Dermatol 18: 362–369

    Article  PubMed  Google Scholar 

  176. Streilein JW (1983) Skin-associated lymphoid tissues (SALT): origins and functions. J Invest Dermatol 80: 12s–16s

    Article  PubMed  Google Scholar 

  177. Strobl H, Riedl E, Scheinecker C, Bello-Fernandez C, Pickl WF, Rappersberger K, Majdic O, Knapp W (1996) TGF-b1 promotes in vitro development of dendritic cells from CD34+ hemopoietic progenitors. J Immunol 157: 1499–1507

    PubMed  CAS  Google Scholar 

  178. Sun L, Akiyama K, Zhang H, Yamaza T, Hou Y, Zhao S, Xu T, Le A, Shi S (2009) Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells 27: 1421–1432

    Article  PubMed  CAS  Google Scholar 

  179. Szeder V, Grim M, Halata Z, Sieber-Blum M (2003) Neural crest origin of mammalian Merkel cells. Dev Biol 253: 258–263

    Article  PubMed  CAS  Google Scholar 

  180. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–872

    Article  PubMed  CAS  Google Scholar 

  181. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676

    Article  PubMed  CAS  Google Scholar 

  182. Takeuchi J, Watari E, Shinya E, Norose Y, Matsumoto M, Seya T, Sugita M, Kawana S, Takahashi H (2003) Downregulation of Toll-like receptor expression in monocyte-derived Langerhans cell-like cells: implications of low-responsiveness to bacterial components in the epidermal Langerhans cells. Biochem Biophys Res Commun 306: 674–679

    Article  PubMed  CAS  Google Scholar 

  183. Tamaki K, Sugaya M, Tada Y, Yasaka N, Uehira M, Nishimoto H, Nakamura K (2001) Epidermal and dermal gamma-delta T cells. Chem Immunol 79: 43–51

    Article  PubMed  CAS  Google Scholar 

  184. Timpl R (1996) Macromolecular organization of basement membranes. Curr Opin Cell Biol 8: 618–624

    Article  PubMed  CAS  Google Scholar 

  185. Ting JP, Duncan JA, Lei Y (2010) How the noninflammasome NLRs function in the innate immune system. Science 327: 286–290

    Article  PubMed  CAS  Google Scholar 

  186. Tobin DJ (2006) Biochemistry of human skin-our brain on the outside. Chem Soc Rev 35: 52–67

    Article  PubMed  CAS  Google Scholar 

  187. Toebak MJ, Gibbs S, Bruynzeel DP, Scheper RJ, Rustemeyer T (2009) Dendritic cells: biology of the skin. Contact Dermatitis 60: 2–20

    Article  PubMed  CAS  Google Scholar 

  188. Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3: 778–784

    Article  PubMed  CAS  Google Scholar 

  189. Toma JG, McKenzie IA, Bagli D, Miller FD (2005) Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 23: 727–737

    Article  PubMed  CAS  Google Scholar 

  190. Toulon A, Breton L, Taylor KR, Tenenhaus M, Bhavsar D, Lanigan C, Rudolph R, Jameson J, Havran WL (2009) A role for human skin-resident T cells in wound healing. J Exp Med 206: 743–750

    Article  PubMed  CAS  Google Scholar 

  191. Trempus CS, Morris RJ, Bortner CD, Cotsarelis G, Faircloth RS, Reece JM, Tennant RW (2003) Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J Invest Dermatol 120: 501–511

    Article  PubMed  CAS  Google Scholar 

  192. Tsai SY, Clavel C, Kim S, Ang YS, Grisanti L, Lee DF, Kelley K, Rendl M (2010) Oct4 and klf4 reprogram dermal papilla cells into induced pluripotent stem cells. Stem Cells 28: 221–228

    PubMed  CAS  Google Scholar 

  193. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E (2004) Defining the epithelial stem cell niche in skin. Science 303: 359–363

    Article  PubMed  CAS  Google Scholar 

  194. Turville SG, Cameron PU, Handley A, Lin G, Pohlmann S, Doms RW, Cunningham AL (2002) Diversity of receptors binding HIV on dendritic cell subsets. Nature Immunol 3: 975–983

    Article  CAS  Google Scholar 

  195. Van der Aar AM, Sylva-Steenland RM, Bos JD, Kapsenberg ML, de Jong EC, Teunissen MB (2007) Loss of TLR2, TLR4, and TLR5 on Langerhans cells abolishes bacterial recognition. J Immunol 178: 1986–1990

    PubMed  Google Scholar 

  196. Van Keymeulen A, Mascre G, Youseff KK, Harel I, Michaux C, de Geest N, Szpalski C, Achouri Y, Bloch W, Hassan BA, Blanpain C (2009) Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. J Cell Biol 187: 91–100

    Article  PubMed  CAS  Google Scholar 

  197. Vielkind U, Sebzda MK, Gibson IR, Hardy MH (1995) Dynamics of Merkel cell patterns in developing hair follicles in the dorsal skin of mice, demonstrated by a monoclonal antibody to mouse keratin 8. Acta Anat (Basel) 152: 93–109

    Article  CAS  Google Scholar 

  198. Villablanca EJ, Mora JR (2008) A two-step model for Langerhans cell migration to skin-draining LN. Eur J Immunol 38: 2975–2980

    Article  PubMed  CAS  Google Scholar 

  199. Volc-Platzer B, Stingl G, Wolff K, Hinterberger W, Schnedl W (1984) Cytogenetic identification of allogeneic epidermal Langerhans cells in a bone marrowgraft recipient. N Engl J Med 310: 1123–1124

    PubMed  CAS  Google Scholar 

  200. Wakim LM, Waithman J, van Rooijen N, Heath WR, Carbone FR (2008) Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 319: 198–202

    Article  PubMed  CAS  Google Scholar 

  201. Weinlich G, Heine M, Stössel H, Zanella M, Stoitzner P, Ortner U, Smolle J, Koch F, Sepp NT, Schuler G, Romani N (1998) Entry into afferent lymphatics and maturation in situ of migrating murine cutaneous dendritic cells. J Invest Dermatol 110: 441–448

    Article  PubMed  CAS  Google Scholar 

  202. Winkelmann RK (1977) The Merkel cell system and a comparison between it and the neurosecretory or APUD cell system. J Invest Dermatol 69: 41–46

    Article  PubMed  CAS  Google Scholar 

  203. Wollenberg A, Wagner M, Gunther S, Towarowski A, Tuma E, Moderer M, Rothenfusser S, Wetzel S, Endres S, Hartmann G (2002) Plasmacytoid dendritic cells: a new cutaneous dendritic cell subset with distinct role in inflammatory skin diseases. J Invest Dermatol 119: 1096–1102

    Article  PubMed  CAS  Google Scholar 

  204. Yang LY, Zheng JK, Liu XM, Hui GZ, Guo LH (2004) Culture of skin-derived precursors and their differentiation into neurons. Chin J Traumatol 7: 91–95

    PubMed  Google Scholar 

  205. Yu J, Vodyanik MA, Smuga-Otto 6K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318: 1917–1920

    Article  PubMed  CAS  Google Scholar 

  206. Yu N, Zhang S, Zuo F, Kang K, Guan M, Xiang L (2009) Cultured human melanocytes express functional toll-like receptors 2–4, 7 and 9. J Dermatol Sci 56: 113–120

    Article  PubMed  CAS  Google Scholar 

  207. Yurchenco PD, Amenta PS, Patton BL (2004) Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol 22: 521–538

    Article  PubMed  CAS  Google Scholar 

  208. Zaba LC, Fuentes-Duculan J, Steinman RM, Krueger JG, Lowes MA (2007) Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages. J Clin Invest 117: 2517–2525

    Article  PubMed  CAS  Google Scholar 

  209. Zhao Z, Liao L, Cao Y, Jiang X, Zhao RC (2005) Establishment and properties of fetal dermis-derived mesenchymal stem cell lines: plasticity in vitro and hematopoietic protection in vivo. Bone Marrow Transplant 36: 355–365

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adelheid Elbe-Bürger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Elbe-Bürger, A. (2012). Skin architecture and function. In: Kamolz, LP., Jeschke, M.G., Horch, R.E., Küntscher, M., Brychta, P. (eds) Handbook of Burns. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0315-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0315-9_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0314-2

  • Online ISBN: 978-3-7091-0315-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics