Skip to main content

Indicators for the Adaptive Choice of Multi-Scale Solvers Based on Configurational Mechanics

  • Chapter
  • First Online:
Multi-scale Simulation of Composite Materials

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 698 Accesses

Abstract

For heterogeneous multi-scale methods,different analytical and numerical homogenisation methods can be applied on the micro-level, where the computational domain is a representative volume element (RVE). Several numerical homogenisation algorithms which are based on boundary element approaches, pseudo spectral discretizations, or finite element schemes are available for RVEs. However, each of these methods is only appropriate in subdomains of the macro-scale domain (component), e.g. in low-stress or highly stressed component regions. Therefore, indicators for the adaptive choice of solvers on the micro-scale are helpful. The proposed indicators make use of ideas from configurational mechanics.First of all, configurational forces are introduced as indicators. Then the multi-scale approach for configurational forces is explained and illustrated with an example. Afterwards the application of the configurational forces as an indicator for a refined homogenisation method is demonstrated. The last section is devoted to the scalability of heterogeneous multi-scale computations on parallel computers. A parallel finite element code is used for the macro-scale, and a PYTHON interface for the coupling with the different micro-scale solvers is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braun, M.: Configurational forces induced by finite-element discretization. Proc. Estonian Acad. Sci. Phys. Math. 46(1/2), 24–31 (1997)

    Google Scholar 

  2. Eshelby, J.D.: Energy relations and the energy-momentum tensor in continuum mechanics, pp. 77–115. In: Kanninen [9] (1970)

    Google Scholar 

  3. GeoDict.: www.geodict.com. Accessed 16 Jan 2019

  4. Gross, D., Seelig, T.: Fracture Mechanics: With an Introduction to Micromechanics. Springer (2017)

    Google Scholar 

  5. Gürses, E., Miehe, C.: A computational framework of three-dimensional configurational-force-driven brittle crack propagation. Comput. Method Appl. Mech. Eng. 198(15–16), 1413–1428 (2009)

    Article  Google Scholar 

  6. Gurtin, M., Podio-Guidugli, P.: Configurational forces and the basic laws for crack propagation. JMPS 44(6), 905–927 (1996)

    Article  MathSciNet  Google Scholar 

  7. Gurtin, M.E.: Configurational Forces as Basic Concept of Continuum Physics. Springer, Berlin, New York, Heidelberg (2000)

    Google Scholar 

  8. Heintz, P., Larsson, F., Hansbo, P., Runnesson, K.: Adaptive strategies and error control for computing materialforces in fracture mechanics. Int. J. Numer. Method Eng. 60, 1287–1299 (2004)

    Article  Google Scholar 

  9. Hill, R.: On constitutive macro-variables for heterogeneous solids at finite strain. Proc. R. Soc. Lond. A 326(1565), 131–147 (1972)

    Article  Google Scholar 

  10. Kanninen, M.F. (ed.): Inelastic Behaviour of Solids. McGraw Hill, New York (1970)

    Google Scholar 

  11. Khalaquzzaman, M., Xu, B.X., Ricker, S., Müller, R.: Computational homogenization of piezoelectric materials using FE\({}^{2}\) to determine configurational forces. Tech. Mech. 32(1), 21–37 (2012)

    Google Scholar 

  12. Kienzler, R., Herrmann, G.: Mechanics in Material Space. Springer, New York, Berlin, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Kuhn, C., Müller, R., Klassen, M., Gross, D.: Numerical homogenization of the Eshelby tensor at small strains. Math. Mech. Solids (2017). https://doi.org/10.1177/1081286517724607

  14. Maugin, G.A.: Material Inhomogeneities in Elasticity. Chapman & Hall, London, Glasgow, New York, Tokyo, Melbourne, Madras (1993)

    Chapter  Google Scholar 

  15. Maugin, G.A.: Configurational Forces—Thermomechanics, Physics, Mathematics, and Numerics. CRC Press, Boca Raton, London, New York (2011)

    Google Scholar 

  16. Miehe, C., Gürses, E.: A robust algorithm for configurational force driven brittle crack propagation with r-adaptive mesh alignment. IJNME 72, 127–155 (2007)

    Article  MathSciNet  Google Scholar 

  17. Miehe, C., Gürses, E., Birkle, M.: A computational framework of configurational-force-driven brittle fracture based on incremental energy minimization. Int. J. Fract. 145(4), 245–259 (2007)

    Article  Google Scholar 

  18. Molser, J., Ortiz, M.: On the numerical implementation of variational arbitrary Lagrangian–Eulerian (VALE) formulations. Int. J. Numer. Method Eng. 67(9), 1272–1289 (2006)

    Google Scholar 

  19. Mueller, R., Maugin, G.: On material forces and finite element discretizations. Comput. Mech. 29(1), 52–60 (2002)

    Article  MathSciNet  Google Scholar 

  20. Mueller, R., Gross, D., Maugin, G.: Use of material forces in adaptive finite element methods. Comput. Mech. 33, 421–434 (2004)

    Article  Google Scholar 

  21. Mueller, R., Kolling, S., Gross, D.: On configurational forces in the context of the Finite Element Method. Int. J. Numer. Method Eng. 61(1), 1–21 (2004)

    Google Scholar 

  22. Mura, T.: Micromechanics of Defects in Solids. Martinus Nijhoff Publishers (1987)

    Google Scholar 

  23. Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials. North Holland, Amsterdam, London, New York, Tokyo (1993)

    Chapter  Google Scholar 

  24. Qu, J., Cherkaoui, M.: Fundamentals of Micromechanics of Solids. Wiley (2007)

    Google Scholar 

  25. Ricker, S., Mergheim, J., Steinmann, P.: On the multiscale computation of defect driving forces. Int. J. Multiscale Comput. Eng. 7(5) (2009). https://doi.org/10.1615/IntJMultCompEng.v7.i5.70

    Article  Google Scholar 

  26. Ricker, S., Mergheim, J., Steinmann, P., Müller, R.: A comparison of different approaches in the multi-scale computation of configurational forces. Int. J. Fract. 166, 203–214 (2010)

    Article  Google Scholar 

  27. Steinmann, P.: Application of material forces to hyperelastic fracture mechanics. I. Continuum mechanical setting. Int. J. Solids Struct. 37(48–50), 7371–7391 (2000)

    Google Scholar 

  28. Steinmann, P., Ackermann, D., Barth, F.J.: Application of material forces to hyperelastic fracture mechanics. II. Computational setting. Int. J. Solids Struct. 38(32–33), 5509–5526 (2001)

    Google Scholar 

  29. Thoutireddy, P., Ortiz, M.: A variational r-adaption and shape-optimization method for finite deformation elasticity. Int. J. Numer. Method Eng. 53, 1557–1574 (2002)

    Google Scholar 

Download references

Acknowledgements

The authors thank J. Hebel and Md. Khalaquzzaman for the fruitful discussions and productive cooperation within the project MUlti-scale SImulation of COmposites (MUSIKO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Müller, R., Kuhn, C., Klassen, M., Andrä, H., Staub, S. (2019). Indicators for the Adaptive Choice of Multi-Scale Solvers Based on Configurational Mechanics. In: Diebels, S., Rjasanow, S. (eds) Multi-scale Simulation of Composite Materials. Mathematical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57957-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-57957-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57956-5

  • Online ISBN: 978-3-662-57957-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics