Skip to main content

Muscle Dysfunction After Anterior Cruciate Ligament Rupture and Reconstruction: Implications for Successful Recovery

  • Chapter
  • First Online:
ACL Injuries in the Female Athlete

Abstract

Lower extremity kinetic chain neuromuscular control and kinematics are of utmost importance of consideration to both prevent anterior cruciate ligament (ACL) injuries and rehabilitate athletes after ACL reconstruction. This chapter investigates the associated muscle dysfunction experienced in the lower limb after ACL injury and reconstruction. In addition, the most recent literature is presented regarding the importance of proper lower limb objective evaluation before return to sports following ACL injury and reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sanders TL, Maradit Kremers H, Bryan AJ, Larson DR, Dahm DL, Levy BA, Stuart MJ, Krych AJ (2016) Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med 44(6):1502–1507. https://doi.org/10.1177/0363546516629944

    Article  PubMed  Google Scholar 

  2. Amis AA, Bull A, Lie D (2005) Biomechanics of rotational instability and anatomic anterior cruciate ligament reconstruction. Oper Tech Orthop 15:29–35

    Article  Google Scholar 

  3. Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, Demaio M, Dick RW, Engebretsen L, Garrett WE Jr, Hannafin JA, Hewett TE, Huston LJ, Ireland ML, Johnson RJ, Lephart S, Mandelbaum BR, Mann BJ, Marks PH, Marshall SW, Myklebust G, Noyes FR, Powers C, Shields C Jr, Shultz SJ, Silvers H, Slauterbeck J, Taylor DC, Teitz CC, Wojtys EM, Yu B (2006) Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II Meeting, January 2005. Am J Sports Med 34(9):1512–1532

    Article  PubMed  Google Scholar 

  4. Cairns SP, Knicker AJ, Thompson MW, Sjogaard G (2005) Evaluation of models used to study neuromuscular fatigue. Exerc Sport Sci Rev 33(1):9–16

    PubMed  Google Scholar 

  5. Liederbach M, Kremenic IJ, Orishimo KF, Pappas E, Hagins M (2014) Comparison of landing biomechanics between male and female dancers and athletes, part 2: influence of fatigue and implications for anterior cruciate ligament injury. Am J Sports Med 42(5):1089–1095. https://doi.org/10.1177/0363546514524525

    Article  PubMed  Google Scholar 

  6. Ardern CL, Webster KE, Taylor NF, Feller JA (2011) Return to sport following anterior cruciate ligament reconstruction surgery: a systematic review and meta-analysis of the state of play. Br J Sports Med 45(7):596–606. https://doi.org/10.1136/bjsm.2010.076364

    Article  PubMed  Google Scholar 

  7. Hiemstra LA, Gofton WT, Kriellaars DJ (2005) Hip strength following hamstring tendon anterior cruciate ligament reconstruction. Clin J Sport Med 15(3):180–182

    Article  PubMed  Google Scholar 

  8. Jaramillo J, Worrell TW, Ingersoll CD (1994) Hip isometric strength following knee surgery. J Orthop Sports Phys Ther 20(3):160–165

    Article  CAS  PubMed  Google Scholar 

  9. Karanikas K, Arampatzis A, Bruggemann GP (2009) Motor task and muscle strength followed different adaptation patterns after anterior cruciate ligament reconstruction. Eur J Phys Rehabil Med 45(1):37–45

    PubMed  CAS  Google Scholar 

  10. Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, van den Bogert AJ, Paterno MV, Succop P (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 33(4):492–501. https://doi.org/10.1177/0363546504269591

    Article  PubMed  Google Scholar 

  11. Muller L, Hildebrandt C, Muller E, Fink C, Raschner C (2017) Long-term athletic development in youth alpine ski racing: the effect of physical fitness, ski racing technique, anthropometrics and biological maturity status on injuries. Front Physiol 8:656. https://doi.org/10.3389/fphys.2017.00656

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nariai M, Yoshida N, Imai A, Ae K, Ogaki R, Suhara H, Shiraki H (2017) A biomechanical comparison among three kinds of rebound-type jumps in female collegiate athletes. Int J Sports Phys Ther 12(4):560–568

    PubMed  PubMed Central  Google Scholar 

  13. Saunders N, McLean SG, Fox AS, Otago L (2014) Neuromuscular dysfunction that may predict ACL injury risk: a case report. Knee 21(3):789–792. https://doi.org/10.1016/j.knee.2014.01.005

    Article  PubMed  Google Scholar 

  14. Dalton EC, Pfile KR, Weniger GR, Ingersoll CD, Herman D, Hart JM (2011) Neuromuscular changes after aerobic exercise in people with anterior cruciate ligament-reconstructed knees. J Athl Train 46(5):476–483

    Article  PubMed  PubMed Central  Google Scholar 

  15. Geoghegan JM, Geutjens GG, Downing ND, Colclough K, King RJ (2007) Hip extension strength following hamstring tendon harvest for ACL reconstruction. Knee 14(5):352–356. https://doi.org/10.1016/j.knee.2007.06.003

    Article  PubMed  Google Scholar 

  16. Thomas AC, Villwock M, Wojtys EM, Palmieri-Smith RM (2013) Lower extremity muscle strength after anterior cruciate ligament injury and reconstruction. J Athl Train 48(5):610–620. https://doi.org/10.4085/1062-6050-48.3.23

    Article  PubMed  PubMed Central  Google Scholar 

  17. VandenBerg C, Crawford EA, Sibilsky Enselman E, Robbins CB, Wojtys EM, Bedi A (2017) Restricted hip rotation is correlated with an increased risk for anterior cruciate ligament injury. Arthroscopy 33(2):317–325. https://doi.org/10.1016/j.arthro.2016.08.014

    Article  PubMed  Google Scholar 

  18. Bedi A, Warren RF, Wojtys EM, Oh YK, Ashton-Miller JA, Oltean H, Kelly BT (2016) Restriction in hip internal rotation is associated with an increased risk of ACL injury. Knee Surg Sports Traumatol Arthrosc 24(6):2024–2031. https://doi.org/10.1007/s00167-014-3299-4

    Article  PubMed  Google Scholar 

  19. Khayambashi K, Ghoddosi N, Straub RK, Powers CM (2016) Hip muscle strength predicts noncontact anterior cruciate ligament injury in male and female athletes: a prospective study. Am J Sports Med 44(2):355–361. https://doi.org/10.1177/0363546515616237

    Article  PubMed  Google Scholar 

  20. Diermann N, Schumacher T, Schanz S, Raschke MJ, Petersen W, Zantop T (2009) Rotational instability of the knee: internal tibial rotation under a simulated pivot shift test. Arch Orthop Trauma Surg 129(3):353–358. https://doi.org/10.1007/s00402-008-0681-z

    Article  PubMed  Google Scholar 

  21. Osternig LR, Ferber R, Mercer J, Davis H (2000) Human hip and knee torque accommodations to anterior cruciate ligament dysfunction. Eur J Appl Physiol 83(1):71–76. https://doi.org/10.1007/s004210000249

    Article  PubMed  CAS  Google Scholar 

  22. Drechsler WI, Cramp MC, Scott OM (2006) Changes in muscle strength and EMG median frequency after anterior cruciate ligament reconstruction. Eur J Appl Physiol 98(6):613–623. https://doi.org/10.1007/s00421-006-0311-9

    Article  PubMed  Google Scholar 

  23. de Jong SN, van Caspel DR, van Haeff MJ, Saris DB (2007) Functional assessment and muscle strength before and after reconstruction of chronic anterior cruciate ligament lesions. Arthroscopy 23(1):21–28. 28.e21–23

    PubMed  Google Scholar 

  24. Konishi Y, Fukubayashi T (2010) Relationship between muscle volume and muscle torque of the hamstrings after anterior cruciate ligament reconstruction. J Sci Med Sport 13(1):101–105. https://doi.org/10.1016/j.jsams.2008.08.001

    Article  PubMed  Google Scholar 

  25. Yasuda K, Ohkoshi Y, Tanabe Y, Kaneda K (1991) Muscle weakness after anterior cruciate ligament reconstruction using patellar and quadriceps tendons. Bull Hosp Jt Dis Orthop Inst 51(2):175–185

    PubMed  CAS  Google Scholar 

  26. Xergia SA, McClelland JA, Kvist J, Vasiliadis HS, Georgoulis AD (2011) The influence of graft choice on isokinetic muscle strength 4-24 months after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19(5):768–780. https://doi.org/10.1007/s00167-010-1357-0

    Article  PubMed  Google Scholar 

  27. Wright RW, Magnussen RA, Spindler KP (2011) Ipsilateral graft and contralateral ACL rupture at five years or more following ACL reconstruction. A systematic review. J Bone Joint Surg Am 92:59–65. https://doi.org/10.2106/JBJSJ.00898

    Article  Google Scholar 

  28. Chung KS, Ha JK, Yeom CH, Ra HJ, Lim JW, Kwon MS, Kim JG (2015) Are muscle strength and function of the uninjured lower limb weakened after anterior cruciate ligament injury? Two-year follow-up after reconstruction. Am J Sports Med 43(12):3013–3021. https://doi.org/10.1177/0363546515606126

    Article  PubMed  Google Scholar 

  29. Dingenen B, Janssens L, Luyckx T, Claes S, Bellemans J, Staes FF (2015) Lower extremity muscle activation onset times during the transition from double-leg stance to single-leg stance in anterior cruciate ligament injured subjects. Hum Mov Sci 44:234–245. https://doi.org/10.1016/j.humov.2015.09.007

    Article  PubMed  Google Scholar 

  30. Dingenen B, Janssens L, Claes S, Bellemans J, Staes FF (2016) Lower extremity muscle activation onset times during the transition from double-leg stance to single-leg stance in anterior cruciate ligament reconstructed subjects. Clin Biomech (Bristol, Avon) 35:116–123. https://doi.org/10.1016/j.clinbiomech.2016.04.014

    Article  Google Scholar 

  31. Norte GE, Knaus KR, Kuenze C, Handsfield GG, Meyer CH, Blemker SS, Hart JM (2017) MRI-based assessment of lower extremity muscle volumes in patients before and after ACL reconstruction. J Sport Rehabil 32:1–40. https://doi.org/10.1123/jsr.2016-0141

    Article  Google Scholar 

  32. Hasegawa S, Kobayashi M, Arai R, Tamaki A, Nakamura T, Moritani T (2011) Effect of early implementation of electrical muscle stimulation to prevent muscle atrophy and weakness in patients after anterior cruciate ligament reconstruction. J Electromyogr Kinesiol 21(4):622–630. https://doi.org/10.1016/j.jelekin.2011.01.005

    Article  PubMed  Google Scholar 

  33. Barber-Westin SD, Noyes FR (2011) Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy 27(12):1697–1705. https://doi.org/10.1016/j.arthro.2011.09.009

    Article  PubMed  Google Scholar 

  34. Keays SL, Bullock-Saxton JE, Keays AC, Newcombe PA, Bullock MI (2007) A 6-year follow-up of the effect of graft site on strength, stability, range of motion, function, and joint degeneration after anterior cruciate ligament reconstruction: patellar tendon versus semitendinosus and Gracilis tendon graft. Am J Sports Med 35(5):729–739

    Article  PubMed  Google Scholar 

  35. Pinczewski LA, Lyman J, Salmon LJ, Russell VJ, Roe J, Linklater J (2007) A 10-year comparison of anterior cruciate ligament reconstructions with hamstring tendon and patellar tendon autograft: a controlled, prospective trial. Am J Sports Med 35(4):564–574

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mlynarek, R.A., Tyrrell Burrus, M., Bedi, A. (2018). Muscle Dysfunction After Anterior Cruciate Ligament Rupture and Reconstruction: Implications for Successful Recovery. In: Noyes, F., Barber-Westin, S. (eds) ACL Injuries in the Female Athlete. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56558-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56558-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56557-5

  • Online ISBN: 978-3-662-56558-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics