Skip to main content

The Reason for Incommensurability of Three-Phase Theory with Classical Traffic Flow Theories

  • Chapter
  • First Online:
Breakdown in Traffic Networks
  • 1099 Accesses

Abstract

In this chapter, we explain why the classical traffic flow instability is inconsistent with the empirical nucleation nature of traffic breakdown at a highway bottleneck. To reach this goal, we use a concept for the distinguishing of a new paradigm in a scientific field introduced by Kuhn. This concept is mainly based on an analysis whether a new theory is incommensurable with the old one or not. A critical comparison of threephase traffic flow models with two-phase traffic flow models as well as with the classical understanding of highway capacity made in this chapter discloses the incommensurability of the three-phase theory with any other classical traffic and transportation theories.

The original version of this chapter was revised. An erratum to the chapter can be found at DOI 10.1007/978-3-662-54473-0_16.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Because a detailed consideration of the moving jam emergence is out of scope of the book, we do not discuss the effect of the bottleneck on the value of the critical flow rate q cr (B).

  2. 2.

    A more detailed explanation of the stable and metastable synchronized flow states with respect to the S → J transition can be found in Chap. 6 of the book [52] and Chap. 5 of the book [62].

  3. 3.

    In reality, a wide moving jam exhibits a complex microscopic spatiotemporal structure that consists of alternations of moving blanks with flow interruption intervals [7476]. For simplicity, moving blanks within the wide moving jam have been neglected in Fig. 8.8. Through this simplification of the real complex microscopic spatiotemporal structure within wide moving jams, the wide moving jam phase is related to the speed that is equal to zero (labeled by J in Fig. 8.8). A detailed consideration of moving blanks within wide moving jams is out of scope of this book (see [7476] and Sec. 2.6 of the book [62]).

  4. 4.

    The mean flow rate q cong is measured within the pinch region of synchronized flow of the GP. In a theory of GPs, this flow rate has been denoted by q (pinch) (see Sec. 18.3 of the book [52]). Here we use a general designation q cong used in [60] for the mean flow rate in congested traffic.

  5. 5.

    The chosen on-ramp inflow rate q on in Figs. 8.158.17 is equal to a characteristic on-ramp inflow rate q on (strong) at which so-called “weak” congestion transforms into “strong” congestion. A theory of “weak” and “strong” congestion in GPs has been presented in Sec. 18.3 of the book [52]: When the on-ramp inflow rate q on exceeds the characteristic on-ramp inflow rate q on (strong), the mean flow rate within the pinch region of the GP q cong does not depend on the on-ramp inflow rate q on any more reaching a limit value denoted by q cong = q lim (pinch) in Sec. 18.3 of the book [52]. In accordance with results of the theory “weak” and “strong” congestion in GPs, simulations show that if we choose the flow rate q on that is larger than q on (strong) = 770 vehicles/h, then neither the discharge flow rate q out (bottle) in Fig. 8.15 nor the flow rate q cong in Fig. 8.17d have on average changed. This is because at q on > q on (strong) congested traffic occurs in the on-ramp lane that limits on average the on-ramp inflow onto the main road to the value q on (strong) = 770 vehicles/h.

  6. 6.

    It should be noted that when the local speed disturbance is close to the critical nucleus for a phase transition, the phase transition exhibits a variety of diverse probabilistic features (Chap. 5 and Sect. 8.3.2). However, qualitative conclusions about critical nuclei made in this chapter below with the use of induced phase transitions are independent of probabilistic features of the phase transitions. For this reason, probabilistic features of induced phase transitions are not considered in the book.

  7. 7.

    It should be noted that when qualitative features of an Z-characteristic for traffic breakdown as a function of the flow rate q sum (Fig. 5.5) has been discussed (Sect. 5.3), we have considered the metastability of the free flow phase (F) with respect to an F → S transition only, rather than the metastability of the synchronized flow phase (S) with respect to an S → F transition. The reason for this limitation of the consideration of the Z-characteristic for traffic breakdown made in Sect. 5.3 is as follows. In the phase F, the sum of the flow rates q in + q on is equal to the flow rate q sum = q in + q on in free flow downstream of the on-ramp bottleneck. For this reason, we can consider the Z-characteristic for traffic breakdown as a function of the flow rate q sum (Fig. 5.5). One of the reasons for such a Z-characteristic is that it shows the minimum highway capacity C min and maximum highway capacity C max of free flow at the bottleneck. However, it must be stressed that strictly speaking the presentation of the Z-characteristic for phase transitions in Fig. 5.5 is valid for the F → S transition only. Contrarily, when the synchronized flow phase (S) is at a highway bottleneck, then in a general case the flow rate within the synchronized flow is not equal to the flow rate q in in free flow upstream of the bottleneck. In this case, the flow rate in free flow downstream of the bottleneck is not equal to the sum q in + q on (see Sects. 8.4.1 and 8.5). For this reason, we present the Z-characteristic for S → J and J → S phase transitions (Fig. 8.8) as well as the 2Z-characteristic (Fig. 8.25) as a function of the on-ramp inflow rate q on at a given flow rate q in.

  8. 8.

    An 2Z-characteristic can also be shown by three-phase traffic flow models that do not satisfy hypothesis of the three-phase theory about 2D-steady states of synchronized flow (Sect. 5.9.1). In other words, 2D-steady states of synchronized flow is not a necessarily condition for a three-phase traffic flow model [72].

  9. 9.

    At model parameters chosen in the three-phase model that simulations presented in Fig. 8.26, condition

    $$\displaystyle{ C_{\mathrm{min}} <q_{\mathrm{out}} }$$
    (8.17)

    is satisfied. However, under conditions

    $$\displaystyle{ C_{\mathrm{min}} \leq q_{\mathrm{sum}} <q_{\mathrm{out}} }$$
    (8.18)

    no F → J transition is possible. Therefore, under condition (8.18) only the F → S transition can occur at the bottleneck in the three-phase model. In contrast, in the two-phase model at any flow rate q sum < q out no phase transition can be induced in free flow at the bottleneck. We have found that the minimum highway capacity C min can depend considerably on the value q on. In particular, at other model parameters than those used in Fig. 8.26 we can also find that C min > q out.

References

  1. A. Aw, M. Rascle, SIAM J. Appl. Math. 60, 916–938 (2000)

    Article  MathSciNet  Google Scholar 

  2. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. Sugiyama, Phys. Rev. E 51, 1035–1042 (1995)

    Article  Google Scholar 

  3. R.Barlović, L. Santen, A. Schadschneider, M. Schreckenberg, Eur. Phys. J. B 5, 793–800 (1998)

    Article  Google Scholar 

  4. R. Borsche, M. Kimathi, A. Klar, Comp. Math. Appl. 64, 2939–2953 (2012)

    Article  Google Scholar 

  5. W. Brilon, J. Geistefeldt, M. Regler, in Traffic and Transportation Theory ed. by H.S. Mahmassani (Elsevier Science, Amsterdam, 2005), pp. 125–144

    Google Scholar 

  6. W. Brilon, M. Regler, J. Geistefeld Straßenverkehrstechnik, Heft 3, 136 (2005)

    Google Scholar 

  7. W. Brilon, H. Zurlinden Straßenverkehrstechnik, Heft 4, 164 (2004)

    Google Scholar 

  8. R.E. Chandler, R. Herman, E.W. Montroll, Oper. Res. 6, 165–184 (1958)

    Article  Google Scholar 

  9. D. Chowdhury, L. Santen, A. Schadschneider, Phys. Rep. 329, 199 (2000)

    Article  MathSciNet  Google Scholar 

  10. C.F. Daganzo, Trans. Res. B 28, 269–287 (1994)

    Article  Google Scholar 

  11. C.F. Daganzo, Transp. Res. B 29, 79–93 (1995)

    Article  Google Scholar 

  12. C.F. Daganzo, Fundamentals of Transportation and Traffic Operations (Elsevier Science, New York, 1997)

    Book  Google Scholar 

  13. C.F. Daganzo, M.J. Cassidy, R.L. Bertini, Transp. Res. A 33, 365–379 (1999)

    Google Scholar 

  14. L. Elefteriadou, An Introduction to Traffic Flow Theory, Springer Optimization and Its Applications, vol. 84 (Springer, Berlin 2014)

    Book  MATH  Google Scholar 

  15. L. Elefteriadou, A. Kondyli, W. Brilon, F.L. Hall, B. Persaud, S. Washburn, J. Transp. Eng. 140, 04014003 (2014)

    Article  Google Scholar 

  16. L. Elefteriadou, R.P. Roess, W.R. McShane Transp. Res. Rec. 1484, 80–89 (1995)

    Google Scholar 

  17. N.H. Gartner, C.J. Messer, A. Rathi (eds.), Traffic Flow Theory (Transportation Research Board, Washington, D.C., 2001)

    Google Scholar 

  18. D.C. Gazis, Traffic Theory (Springer, Berlin, 2002)

    MATH  Google Scholar 

  19. D.C. Gazis, R. Herman, R.B. Potts, Oper. Res. 7, 499–505 (1959)

    Article  Google Scholar 

  20. D.C. Gazis, R. Herman, R.W. Rothery, Oper. Res. 9, 545–567 (1961)

    Article  Google Scholar 

  21. J. Geistefeldt, W. Brilon, in Transportation and Traffic Theory 2009, ed. by W.H.K. Lam, S.C. Wong, H.K. Lo (Springer, Dordrecht, Heidelberg, London, New York, 2009), pp. 583–602

    Google Scholar 

  22. P.G. Gipps, Transp. Res. B 15, 105–111 (1981)

    Article  Google Scholar 

  23. P.G. Gipps, Transp. Res. B. 20, 403–414 (1986)

    Article  Google Scholar 

  24. F.L. Hall, Transp. Res. A 21, 191–201 (1987)

    Article  Google Scholar 

  25. F.L. Hall, K. Agyemang-Duah Transp. Res. Rec. 1320, 91–98 (1991)

    Google Scholar 

  26. F.L. Hall, V.F. Hurdle, J.H. Banks Transp. Res. Rec. 1365, 12–18 (1992)

    Google Scholar 

  27. F.L. Hall, M.A. Gunter, Transp. Res. Rec. 1091, 1–9 (1986)

    Google Scholar 

  28. D. Helbing, Rev. Mod. Phys. 73, 1067–1141 (2001)

    Article  Google Scholar 

  29. R. Herman, E.W. Montroll, R.B. Potts, R.W. Rothery, Oper. Res. 7, 86–106 (1959)

    Article  Google Scholar 

  30. Highway Capacity Manual 2000 (National Research Council, Transportation Research Board, Washington, D.C., 2000)

    Google Scholar 

  31. Highway Capacity Manual 2010 (National Research Council, Transportation Research Board, Washington, D.C., 2010)

    Google Scholar 

  32. R. Jiang, M.-B. Hu, H.M. Zhang, Z.-Y. Gao, B. Jia, Q.-S. Wu, Transp. Res. B 80, 338–354 (2015)

    Article  Google Scholar 

  33. R. Jiang, M.-B. Hu, H.M. Zhang, Z.-Y. Gao, B. Jia, Q.-S. Wu, B. Wang, M. Yang, PLOS One 9, e94351 (2014)

    Article  Google Scholar 

  34. R. Jiang, C.-J. Jin, H.M. Zhang, Y.-X. Huang, J.-F. Tian, W. Wang, M.-B. Hu, H. Wang, B. Jia, in Proc. Int. Symposium on Traffic and Transportation Theory ISTTT22 (2017) (accepted)

    Google Scholar 

  35. R. Jiang, Q.S. Wu, Z.J. Zhu, Phys. Rev. E 64, 017101 (2001)

    Article  Google Scholar 

  36. B.S. Kerner, in Proceedings of the 3 rd Symposium on Highway Capacity and Level of Service, ed. by R. Rysgaard, vol. 2. (Road Directorate, Ministry of Transport, Denmark, 1998), pp. 621–642

    Google Scholar 

  37. B.S. Kerner, Phys. Rev. Lett. 81, 3797–3800 (1998)

    Article  Google Scholar 

  38. B.S. Kerner, Trans. Res. Rec. 1678, 160–167 (1999)

    Article  Google Scholar 

  39. B.S. Kerner, in Transportation and Traffic Theory, ed. by A. Ceder (Elsevier Science, Amsterdam, 1999), pp. 147–171

    Google Scholar 

  40. B.S. Kerner, Physics World 12, 25–30 (1999)

    Article  Google Scholar 

  41. B.S. Kerner, J. Phys. A Math. Gen. 33, L221–L228 (2000)

    Article  Google Scholar 

  42. B.S. Kerner, in Traffic and Granular Flow ’99: Social, Traffic and Granular Dynamics, ed. by D. Helbing, H.J. Herrmann, M. Schreckenberg, D.E. Wolf (Springer, Heidelberg, Berlin, 2000), pp. 253–284

    Google Scholar 

  43. B.S. Kerner, Transp. Res. Rec. 1710, 136–144 (2000)

    Article  Google Scholar 

  44. B.S. Kerner, in 2001 IEEE Intelligent Transp. Systems Conference Proc. (Oakland, USA, 2001), pp. 88–93

    Google Scholar 

  45. B.S. Kerner, Netw. Spat. Econ. 1, 35–76 (2001)

    Article  Google Scholar 

  46. B. S. Kerner, Transp. Res. Rec. 1802, 145–154 (2002)

    Article  Google Scholar 

  47. B. S. Kerner, in Traffic and Transportation Theory in the 21st Century, ed. by M.A.P. Taylor (Elsevier Science, Amsterdam, 2002), pp. 417–439

    Google Scholar 

  48. B.S. Kerner, Phys. Rev. E. 65, 046138 (2002)

    Article  Google Scholar 

  49. B. S. Kerner, Math. Comput. Modell. 35, 481–508 (2002)

    Article  Google Scholar 

  50. B.S. Kerner, in Traffic and Granular Flow’ 01, ed. by M. Schreckenberg, Y. Sugiyama, D. Wolf (Springer, Berlin, 2003), pp. 13–50

    Google Scholar 

  51. B.S. Kerner, Physica A 333, 379–440 (2004)

    Article  MathSciNet  Google Scholar 

  52. B.S. Kerner, The Physics of Traffic (Springer, Berlin, New York, 2004)

    Book  Google Scholar 

  53. B.S. Kerner, Physica A 355, 565–601 (2005)

    Article  Google Scholar 

  54. B.S. Kerner, IEEE Trans. ITS 8, 308–320 (2007)

    Google Scholar 

  55. B.S. Kerner, Transp. Res. Rec. 1999, 30–39 (2007)

    Article  Google Scholar 

  56. B.S. Kerner, Traffic Eng. Contr. 48, 28–35 (2007)

    Google Scholar 

  57. B.S. Kerner, Traffic Eng. Contr. 48, 68–75 (2007)

    Google Scholar 

  58. B.S. Kerner, Traffic Eng. Contr. 48, 114–120 (2007)

    Google Scholar 

  59. B.S. Kerner, Transp. Res. Rec. 2088, 80–89 (2008)

    Article  Google Scholar 

  60. B.S. Kerner, J. Phys. A Math. Theor. 41, 215101 (2008)

    Article  Google Scholar 

  61. B.S. Kerner, in Transportation Research Trends, ed. by P.O. Inweldi (Nova Science Publishers, New York, 2008), pp. 1–92

    Google Scholar 

  62. B.S. Kerner, Introduction to Modern Traffic Flow Theory and Control (Springer, Heidelberg, Dordrecht, London, New York, 2009)

    Book  MATH  Google Scholar 

  63. B.S. Kerner, in Encyclopedia of Complexity and System Science, ed. by R.A. Meyers (Springer, Berlin, 2009), pp. 9302–9355

    Google Scholar 

  64. B.S. Kerner, in Encyclopedia of Complexity and System Science, ed. by R.A. Meyers (Springer, Berlin, 2009), pp. 9355–9411

    Google Scholar 

  65. B.S. Kerner, Phys. Rev. E. 85, 036110 (2012)

    Article  Google Scholar 

  66. B.S. Kerner, Physica A 392, 5261–5282 (2013)

    Article  MathSciNet  Google Scholar 

  67. B.S. Kerner, in Vehicular Communications and Networks, ed. by W. Chen (Woodhead Publishings, Cambridge, 2015), pp. 223–254

    Google Scholar 

  68. B.S. Kerner, Elektrotechnik Informationstechnik 132, 417–433 (2015)

    Article  Google Scholar 

  69. B.S. Kerner, Physica A 450, 700–747 (2016)

    Article  MathSciNet  Google Scholar 

  70. B.S. Kerner, S.L. Klenov, J. Phys. A Math. Gen. 35, L31–L43 (2002)

    Article  Google Scholar 

  71. B.S. Kerner, S.L. Klenov, Phys. Rev. E 68, 036130 (2003)

    Article  Google Scholar 

  72. B.S. Kerner, S.L. Klenov, J. Phys. A Math. Gen. 39, 1775–1809 (2006)

    Article  Google Scholar 

  73. B.S. Kerner, S.L. Klenov, G. Hermanns, M. Schreckenberg, Physica A 392, 4083–4105 (2013)

    Article  MathSciNet  Google Scholar 

  74. B.S. Kerner, S.L. Klenov, A. Hiller, J. Phys. A Math. Gen. 39, 2001–2020 (2006)

    Article  Google Scholar 

  75. B.S. Kerner, S.L. Klenov, A. Hiller, Non. Dynam. 49, 525–553 (2007)

    Article  Google Scholar 

  76. B.S. Kerner, S.L. Klenov, A. Hiller, H. Rehborn, Phys. Rev. E 73, 046107 (2006)

    Article  Google Scholar 

  77. B.S. Kerner, S.L. Klenov, M. Schreckenberg, Phys. Rev. E 84, 046110 (2011)

    Article  Google Scholar 

  78. B.S. Kerner, S.L. Klenov, M. Schreckenberg, Phys. Rev. E 89, 052807 (2014)

    Article  Google Scholar 

  79. B.S. Kerner, S.L. Klenov, D.E. Wolf, J. Phys. A Math. Gen. 35, 9971–10013 (2002)

    Article  Google Scholar 

  80. B.S. Kerner, P. Konhäuser, Phys. Rev. E 48, 2335–2338 (1993)

    Article  Google Scholar 

  81. B.S. Kerner, P. Konhäuser, Phys. Rev. E 50, 54–83 (1994)

    Article  Google Scholar 

  82. B.S. Kerner, P. Konhäuser, M. Schilke, Phys. Rev. E 51, 6243–6246 (1995)

    Article  Google Scholar 

  83. B.S. Kerner, H. Rehborn, Phys. Rev. E 53, R4275–R4278 (1996)

    Article  Google Scholar 

  84. B.S. Kerner, H. Rehborn, Phys. Rev. E 53, R4275–R4278 (1996)

    Article  Google Scholar 

  85. B.S. Kerner, H. Rehborn, Phys. Rev. Lett. 79, 4030–4033 (1997)

    Article  Google Scholar 

  86. B.S. Kerner, H. Rehborn, Internat. Verkehrswesen 50, 196–203 (1998)

    Google Scholar 

  87. B.S. Kerner, H. Rehborn, Internat. Verkehrswesen 50, 347–348 (1998)

    Google Scholar 

  88. S. Krauß, P. Wagner, C. Gawron, Phys. Rev. E 55, 5597–5602 (1997)

    Article  Google Scholar 

  89. T.S. Kuhn, The Structure of Scientific Revolutions, 4th edn. (The University of Chicago Press, Chicago, London, 2012)

    Book  Google Scholar 

  90. J.A. Laval, C.S. Toth, Y. Zhou, Transp. Res. B 70, 228–238 (2014)

    Article  Google Scholar 

  91. M.J. Lighthill, G.B. Whitham, Proc. Roy. Soc. A 229, 281–345 (1955)

    Article  Google Scholar 

  92. M. Lorenz, L. Elefteriadou, Transp. Res. Circ. E-C018, 84–95 (2000)

    Google Scholar 

  93. A.D. May, Traffic Flow Fundamentals (Prentice-Hall, New Jersey, 1990)

    Google Scholar 

  94. T. Nagatani, Physica A 261, 599–607 (1998)

    Article  MathSciNet  Google Scholar 

  95. T. Nagatani, Phys. Rev. E 59, 4857–4864 (1999)

    Article  Google Scholar 

  96. T. Nagatani, Rep. Prog. Phys. 65, 1331–1386 (2002)

    Article  Google Scholar 

  97. K. Nagel, P. Wagner, R. Woesler, Oper. Res. 51, 681–716 (2003)

    Article  MathSciNet  Google Scholar 

  98. K. Nagel, M. Schreckenberg, J. Phys. (France) I 2, 2221–2229 (1992)

    Google Scholar 

  99. A. Nakayama, M. Fukui, M. Kikuchi, K. Hasebe, K. Nishinari, Y. Sugiyama, S-i. Tadaki, S. Yukawa, New J. Phys. 11, 083025 (2009)

    Google Scholar 

  100. G.F. Newell, Oper. Res. 9, 209–229 (1961)

    Article  Google Scholar 

  101. G.F. Newell, in Proc. Second Internat. Sympos. on Traffic Road Traffic Flow (OECD, London 1963), pp. 73–83

    Google Scholar 

  102. G.F. Newell, Transp. Res. B 36, 195–205 (2002)

    Article  Google Scholar 

  103. H.J. Payne, in Mathematical Models of Public Systems, ed. by G.A. Bekey, vol. 1 (Simulation Council, La Jolla, 1971), pp. 51–60

    Google Scholar 

  104. H.J. Payne, Transp. Res. Rec. 772, 68 (1979)

    Google Scholar 

  105. B.N. Persaud, S. Yagar, R. Brownlee, Transp. Res. Rec. 1634, 64–69 (1998)

    Article  Google Scholar 

  106. P.I. Richards, Oper. Res. 4, 42–51 (1956)

    Article  Google Scholar 

  107. A. Schadschneider, D. Chowdhury, K. Nishinari, Stochastic Transport in Complex Systems (Elsevier Science, New York, 2011)

    MATH  Google Scholar 

  108. Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.-I. Tadaki, S. Yukawa, New J. Phys. 10, 033001 (2008)

    Article  Google Scholar 

  109. S. Tadaki, M. Kikuchi, M. Fukui, A. Nakayama, K. Nishinari, A. Shibata, Y. Sugiyama, T. Yoshida, S. Yukawa, New J. Phys. 15, 103034 (2013)

    Article  Google Scholar 

  110. J.-F. Tian, R. Jiang, B. Jia, Z.-Y. Gao, S.F. Ma, Transp. Res. B 93, 338–354 (2016)

    Article  Google Scholar 

  111. J.-F. Tian, R. Jiang, G. Li, M. Treiber, B. Jia, C.Q. Zhu, Transp. Rec. F 41, 55–65 (2016)

    Article  Google Scholar 

  112. M. Treiber, A. Hennecke, D. Helbing, Phys. Rev. E 62, 1805–1824 (2000)

    Article  Google Scholar 

  113. M. Treiber, A. Kesting, Traffic Flow Dynamics (Springer, Berlin, 2013)

    Book  MATH  Google Scholar 

  114. G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)

    MATH  Google Scholar 

  115. G.B. Whitham, Proc. R. Soc. Lond. A 428, 49 (1990)

    Article  Google Scholar 

  116. R. Wiedemann, Simulation des Verkehrsflusses (University of Karlsruhe, Karlsruhe, 1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Kerner, B.S. (2017). The Reason for Incommensurability of Three-Phase Theory with Classical Traffic Flow Theories. In: Breakdown in Traffic Networks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54473-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54473-0_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54471-6

  • Online ISBN: 978-3-662-54473-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics