Skip to main content
Log in

Empirical test of a microscopic three-phase traffic theory

  • Original Article
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A review of dynamic nonlinear features of spatiotemporal congested patterns in freeway traffic is presented. The basis of the review is a comparison of theoretical features of the congested patterns that are shown by a microscopic traffic flow model in the context of the Kerner's three-phase traffic theory and empirical microscopic and macroscopic pattern characteristics measured on different freeways over various days and years. In this test of the microscopic three-phase traffic flow theory, a model of an "open" road is applied: Empirical time-dependence of traffic demand and drivers' destinations are used at the upstream model boundaries. At downstream model boundary conditions for vehicle freely leaving a modeling freeway section(s) are given. Spatiotemporal congested patterns emerge, develop, and dissolve in this open freeway model with the same types of bottlenecks as those in empirical observations. It is found that microscopic three-phase traffic models can explain all known macroscopic and microscopic empirical congested pattern features (e.g., probabilistic breakdown phenomenon as a first-order phase transition from free flow to synchronized flow, moving jam emergence in synchronized flow rather than in free flow, spatiotemporal features of synchronized flow and general congested patterns at freeway bottlenecks, intensification of downstream congestion due to upstream congestion at adjacent bottlenecks). It turns out that microscopic optimal velocity (OV) functions and time headway distributions are not necessarily qualitatively different, even if local congested traffic behavior is qualitatively different. Model performance with respect to spatiotemporal pattern emergence and evolution cannot be tested using these traffic characteristics. The reason for this is that important spatiotemporal features of congested traffic patterns are lost in these and many other macroscopic and microscopic traffic characteristics, which are widely used as the empirical basis for a test of traffic flow models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kerner, B.S.: The Physics of Traffic. Springer, Berlin, New York (2004)

    Google Scholar 

  2. Gartner, N.H., Messer, C.J., Rathi, A. (eds.): Special Report 165: Revised Monograph on Traffic Flow Theory. Transportation Research Board, Washington, DC (1997)

    Google Scholar 

  3. Wolf, D.E.: Phys. A 263, 438 (1999)

    Article  MathSciNet  Google Scholar 

  4. Chowdhury, D., Santen, L., Schadschneider, A.: Phys. Rep. 329, 199 (2000)

    Article  MathSciNet  Google Scholar 

  5. Helbing, D.: Rev. Mod. Phys. 73, 1067–1141 (2001)

    Article  Google Scholar 

  6. Nagatani, T.: Rep. Prog. Phys. 65, 1331–1386 (2002)

    Article  Google Scholar 

  7. Nagel, K., Wagner, P., Woesler, R.: Operat. Res. 51, 681–716 (2003)

    Article  MathSciNet  Google Scholar 

  8. Mahnke, R., Kaupužs, J., Lubashevsky, I.: Phys. Rep. 408, 1–130 (2005)

    Article  Google Scholar 

  9. Lesort, J.-B. (ed.): Transportation and traffic theory. In: Proceedings of the 13th International Symposium on Transportation and Traffic Theory. Elsevier Science Ltd., Oxford (1996)

    Google Scholar 

  10. Ceder, A. (ed.): Transportation and traffic theory. In: Proceedings of the 14th International Symposium on Transportation and Traffic Theory. Elsevier Science Ltd., Oxford (1999)

    Google Scholar 

  11. Taylor, M.A.P. (ed.): Transportation and traffic theory in the 21st century. In: Proceedings of the 15th International Symposium on Transportation and Traffic Theory. Elsevier Science Ltd., Amsterdam (2002)

    Google Scholar 

  12. Mahmassani, H.S. (ed.): Transportation and traffic theory. In: Proceedings of the 16th International Symposium on Transportation and Traffic Theory. Elsevier, Amsterdam (2005)

    Google Scholar 

  13. Wolf, D.E., Schreckenberg, M., Bachem, A. (eds.): Traffic and granular flow. In: Proceedings of the International Workshop on Traffic and Granular Flow, October 1995. World Scientific, Singapore (1995)

    Google Scholar 

  14. Schreckenberg, M., Wolf, D.E. (eds.): Traffic and granular flow '97. In: Proceedings of the International Workshop on Traffic and Granular Flow, October 1997. Springer, Singapore (1998)

    Google Scholar 

  15. Helbing, D., Herrmann, H.J., Schreckenberg, M., Wolf, D.E. (eds.): Traffic and granular flow '99. In: Proceedings of the International Workshop on Traffic and Granular Flow, October 1999. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  16. Fukui, M., Sugiyama, Y., Schreckenberg, M., Wolf, D.E. (eds.): Traffic and granular flow '01. In: Proceedings of the International Workshop on Traffic and Granular Flow, October 2001. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  17. Hoogendoorn, S.P., Bovy, P.H.L., Schreckenberg, M., Wolf, D.E. (eds.): Traffic and granular flow '03. In: Proceedings of the International Workshop on Traffic and Granular Flow, October 2003. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  18. Leutzbach, W.: Introduction to the Theory of Traffic Flow. Springer, Berlin (1988)

    Google Scholar 

  19. Edie, L.C., Foote, R.S.: Highway Res. Board, Proc. Ann. Meet. 37, 334 (1958)

    Google Scholar 

  20. Edie, L.C., Foote. R.S.: Effect of shock waves on tunnel traffic flow. In: Highway Research Board Proceedings, vol. 39, pp. 492–505. HRB, National Research Council, Washington, DC (1960)

    Google Scholar 

  21. Edie, L.C.: Operat. Res. 9, 66–77 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  22. Treiterer, J., Myers, J.A.: The hysteresis phenomenon in traffic flow. In: Buckley, D.J. (ed.) Proceedings of the Sixth International Symposium on Transportation and Traffic Theory, pp. 13–38. A.H. & A.W. Reed, London (1974)

    Google Scholar 

  23. Treiterer, J.: Investigation of traffic dynamics by aerial photogrammetry techniques. Ohio State University Technical Report PB 246 094, Columbus, Ohio (1975)

  24. Koshi, M., Iwasaki, M., Ohkura, I.: Some findings and an overview on vehicular flow characteristics. In: Hurdle, V.F. et al. (eds.) Proceedings of the Eighth International Symposium on Transportation and Traffic Theory, p. 403. University of Toronto Press, Toronto, Ontario (1983)

    Google Scholar 

  25. Kerner, B.S., Konhäuser, P.: Phys. Rev. E 50, 54–83 (1994)

    Article  Google Scholar 

  26. Kerner, B.S., Konhäuser, P., Schilke, M.: Phys. Rev. E 51, 6243–6246 (1995)

    Article  Google Scholar 

  27. Helbing, D., Hennecke, A., Treiber, M.: Phys. Rev. Lett. 82, 4360 (1999)

    Article  Google Scholar 

  28. Lee, H.Y., Lee, H.-W., Kim, D.: Phys. Rev. E 59, 5101 (1999)

    Article  Google Scholar 

  29. Treiber, M., Hennecke, A., Helbing, D.: Phys. Rev. E 62, 1805–1824 (2000)

    Article  Google Scholar 

  30. Kerner, B.S.: Phys. Rev. Lett. 81, 3797 (1998)

    Article  MATH  Google Scholar 

  31. Kerner, B.S.: Phys. Rev. E 65, 046138 (2002)

    Article  Google Scholar 

  32. Kerner, B.S., Klenov, S.L.: J. Phys. A: Math. Gen. 35, L31 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kerner, B.S., Klenov, S.L., Wolf, D.E.: J. Phys. A: Math. Gen. 35, 9971–10013 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kerner, B.S., Klenov, S.L.: e-print: physics/0507120 (2005). E-print in http://arxiv.org/abs/physics/0507120

  35. Kerner, B.S., Klenov, S.L.: J. Phys. A: Math. Gen. 39, 1775–1809 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kerner, B.S., Klenov, S.L.: Phys. Rev. 68, 036130 (2003)

    Google Scholar 

  37. Kerner, B.S., Klenov, S.L.: J. Phys. A: Math. Gen. 37, 8753–8788 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  38. Neubert, L., Santen, L., Schadschneider, A., Schreckenberg, M.: Phys. Rev. E 60, 6480 (1999)

    Article  Google Scholar 

  39. Knospe, W., Santen, L., Schadschneider, A., Schreckenberg, M.: Phys. Rev. E 65, 056133 (2002)

    Article  Google Scholar 

  40. Knospe, W., Santen, L., Schadschneider, A., Schreckenberg, M.: Phys. Rev. E 70, 016115 (2004)

    Article  Google Scholar 

  41. Cremer, M.: Der Verkehrsfluss auf Schnellstrassen. Springer, Berlin (1979)

    Google Scholar 

  42. Brockfeld, E., Kühne, R.D., Skabardonis, A., Wagner, P.: Trans. Res. Rec. 1852, 124–129 (2003)

    Article  Google Scholar 

  43. Wang, Y., Papageorgiou, M., Messmer, A.: Predictive feedback routing control strategy for freeway network traffic. Proceedings of the 83rd Annual Transportation Research Board Meeting, TRB Paper No. 04-3429. TRB,Washington, DC (2004)

  44. Brockfeld, E., Kühne, R. D.,Wagner, P.: Calibration and validation of simulation models 2004. Proceeding of the Transportation Research Board 84th Annual Meeting, TRB Paper No. 05-2152. TRB, Washington, DC (2005)

  45. Davis, L.C.: Phys. Rev. E 69, 016108 (2004)

    Article  Google Scholar 

  46. Lee, H.K., Barlović, R., Schreckenberg, M., Kim, D.: Phys. Rev. Lett. 92, 238702 (2004)

    Article  Google Scholar 

  47. Jiang, R., Wu, Q.S.: J. Phys. A: Math. Gen. 37, 8197–8213 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  48. Gipps, P.G.: Trans. Res. B. 15, 105–111 (1981); Trans. Res. B. 20, 403–414 (1986)

    Article  Google Scholar 

  49. Krauß, S., Wagner, P., Gawron, C.: Phys. Rev. E 55, 5597 (1997)

    Article  Google Scholar 

  50. Cowan, R.J.: Trans. Rec. 9, 371–375 (1976)

    Article  Google Scholar 

  51. Luttinen, T.: Transport. Res. Rec. 1365 92–98 (1992)

    Google Scholar 

  52. Bovy, P.H.L. (ed.): Motorway Analysis: New Methodologies and Recent Empirical Findings. Delft University Press, Delft (1998)

    Google Scholar 

  53. Tilch, B., Helbing, D.: In: SW3, p. 333

  54. Banks, J.: Trans. Rec. B 37, 539–554 (2004)

    Google Scholar 

  55. Gurusinghe, G.S., Nakatsuji, T., Azuta, Y., Ranjitkar, P., Tanaboriboon, Y.: Multiple car-following data using real-time kinematic global positioning system. In: Preprints of the 82nd TRB Annual Meeting, TRB Paper No. 03-4137. TRB, Washington, DC (2003)

  56. Bendat, J.S., Piersol, A.G.: Random Data. Analysis and Measurement Procedures. Wiley, New York (1986)

    MATH  Google Scholar 

  57. Wagner, P., Lubashevsky, I.: cond-mat/0311192 (2003)

  58. Wagner, P.: In SW5, pp. 15–27

  59. Nagel, K., Schreckenberg, M.: J. Phys. (France) I 2, 2221 (1992)

    Article  Google Scholar 

  60. Nagel, K., Paczuski, M.: Phys. Rev. E 51, 2909 (1995)

    Article  Google Scholar 

  61. Schreckenberg, M., Schadschneider, A., Nagel, K., Ito, N.: Phys. Rev. E 51, 2939 (1995)

    Article  Google Scholar 

  62. Barlović, R., Santen, L., Schadschneider, A., Schreckenberg, M.: Eur. Phys. J. B. 5, 793 (1998)

    Article  Google Scholar 

  63. Knospe, W., Santen, L., Schadschneider, A., Schreckenberg, M.: J. Phys. A 33, L477 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  64. Kerner, B.S., Klenov, S.L., Hiller, A.: e-print: physics/ 0507094 (2005). E-print in http://arxiv.org/abs/physics/ 0507094

  65. Kerner, B.S., Klenov, S.L., Hiller, A.: J. Phys. A: Math. Gen. 39, 2001–2020 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  66. Kerner, B.S., Klenov, S.L., Hiller, A., Rehborn, H.: e-print: physics/0510167 (2005). E-print in http://arxiv.org/abs/ hysics/0510167

  67. Kerner, B.S., Klenov, S.L., Hiller, A., Rehborn, H.: Phys. Rev. E 73, 046107 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris S. Kerner.

Additional information

PACS: 89.40. + k, 47.54. + r, 64.60.Cn, 64.60.Lx

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerner, B.S., Klenov, S.L. & Hiller, A. Empirical test of a microscopic three-phase traffic theory. Nonlinear Dyn 49, 525–553 (2007). https://doi.org/10.1007/s11071-006-9113-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-006-9113-1

Keywords

Navigation