Skip to main content

Cathode materials for lithium-ion batteries

  • Chapter
  • First Online:
Lithium-Ion Batteries: Basics and Applications

Abstract

Lithium transition metal compounds are employed as cathode materials. These composites can develop mixed crystals over an ample composition range and can deintercalate lithium ions from the structure during the charging process. The transition metal ions are oxidized because of the charge neutrality and therefore the oxidation state of the transition metal cation is elevated. Lithium is deintercalated while the battery is discharging, which in turn reduces the transition metal ions and decreases the oxidation number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Akimoto J, Gotoh Y, Oosawa Y (1998) J Solid State Chem 141:298

    Article  Google Scholar 

  2. Wang HF, Yang YI, Huang BY, Sadoway DR, Chiang YT (1999) J Electrochem Soc 146:473

    Article  Google Scholar 

  3. Ohzuku T, Brodd RJ (2007) J Power Sources 174:449

    Article  Google Scholar 

  4. Ohzuku T, Ueda A (1994) Solid State Ionics 69:201

    Article  Google Scholar 

  5. Yuan LX et al (2011) Goodenough. Energy Environ Sci 4:269

    Article  Google Scholar 

  6. Wang GX et al (2001) J Power Sources 97−98:298

    Google Scholar 

  7. Molenda J, Marzec J (2009) Funct Mater Lett 3:1

    Article  Google Scholar 

  8. Amatucci GG, Tarascon JM, Klein LC (1996) Solid State Ionics 83:167

    Article  Google Scholar 

  9. Breuer H (2000) dtv-Atlas Chemie, Vol. 1, 9th edition. dtv, München

    Google Scholar 

  10. Dahn JR, Vonsacken U, Michal CA (1990) Solid State Ionics 44:87

    Article  Google Scholar 

  11. Molenda J, Marzec J (2003) Funct Mater Lett 115:115

    Google Scholar 

  12. Rougier A, Gravereau P, Delmas C (1996) J Electrochem Soc 143:1168

    Article  Google Scholar 

  13. Pouilliere C, Croguennec L, Biensan P, Willmann P, Delmas C (2000) J Electrochem Soc 147:2061

    Article  Google Scholar 

  14. Z. Lu, Macneil DD, Dahn JR (2004) Electrochem Solid-State Lett 14:A191

    Google Scholar 

  15. Naghash AR, Lee JY (2001) Electrochim Acta 45:2293

    Article  Google Scholar 

  16. Park SH, Sun YK, Park KS, Nahm KS, Lee YS, Yoshio M (2002) Electrochim Acta 41:1721

    Article  Google Scholar 

  17. Mishra SK, Ceder G (1999) Phys Rev B 59:6120

    Article  Google Scholar 

  18. Armstrong AR, Bruce PG (1996) Nature 381:499

    Article  Google Scholar 

  19. Ceder G, Van der Ven A (1999) Electrochim Acta 45:131

    Article  Google Scholar 

  20. Makimura Y, Ohzuku T (2003) J Power Sources 119:156

    Article  Google Scholar 

  21. Koyama Y, Tanaka I, Adahi H, Makimura Y, Ohzuku T (2003) J Power Sources 119:644

    Article  Google Scholar 

  22. Hwang BJ, Tsai YW, Carlier D, Ceder G (2003) Chem Mater 15:3676

    Article  Google Scholar 

  23. Wang L, Li J, He X, Pu W, Wan C, Jiang C (2009) J Solid State Electrochem 13:1157

    Article  Google Scholar 

  24. Yoon WS, Paik Y, Yang XQ, Balasubramanian M, McBreen J, Grey CP (2002) Elektrochem Solid-State Lett 5:A263

    Google Scholar 

  25. Park OK, Cho Y, Lee S, Yoo H-C, Song H-K, Cho J (2011) Energy Environ Sci 4:1621

    Article  Google Scholar 

  26. Ellis BL, Lee KT, Nazar LF (2010) Chem Mater 22:691

    Article  Google Scholar 

  27. Gnanaraj JS, Pol VG, Gedanken A, Aurbach D (2003) Electrochem Commun 5:940

    Article  Google Scholar 

  28. Thackeray MM, Dekock A, Rossouw MH, Liles D, Bittuhn R, Hoge D (1992) J Electrochem Soc 139:363

    Article  Google Scholar 

  29. Benedek R, Thackeray MM (2006) Eectrochem Solid-State Lett 9:A265

    Article  Google Scholar 

  30. Cho J, Thackeray MM (1999) J Electrochem Soc 146:3577

    Article  Google Scholar 

  31. Cho J (2008) J Mater Chem 18:2257

    Article  Google Scholar 

  32. Thackeray MM, Shao-Horn Y, Kahaian AJ, Kepler KD, Vaughey JT, Hackney SA (1998) Electrochem Solid-State Lett 1:7

    Article  Google Scholar 

  33. Shin YJ, Manthiram A (2994) J Electrochem Soc 151: A208

    Google Scholar 

  34. Deng BH, Nakamura H, Yoshio M (2008) J Power Sources 180:864

    Article  Google Scholar 

  35. Xia YG, Zhang Q, Wang HY, Nakamura H, Noguchi H, Yoshio M (2007) Electrochim Acta 52:4708

    Article  Google Scholar 

  36. Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y (2008) Nano Lett 8:3948

    Article  Google Scholar 

  37. Liu GQ, Wen L, Liu YM (2010) J Solid-State Electrochem 14:2191

    Article  Google Scholar 

  38. Padhi AK, Nanjundaswamy KS, Goddenough JB (1997) J Electrochem Soc 144:1188

    Article  Google Scholar 

  39. Morgan D, Van der Ven A, Ceder G (2004) Electrochem Solid-State Lett 7:A30

    Article  Google Scholar 

  40. Wang YG, Wang YR, Hosono EJ, Wang KX, Zhou HS (2008) Angew Chem Int Ed 47:7461

    Article  Google Scholar 

  41. Kang B, Ceder G (2009) Nature 458:190

    Article  Google Scholar 

  42. Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) J Power Sources 19:503

    Article  Google Scholar 

  43. Koltypin M, Aurbach D, Nazar L, Ellis B (2007) Electrochem Solid-State Lett 10:A40

    Article  Google Scholar 

  44. MacNeil DD, Lu ZH, Chen ZH, Dahn JR (2002) J Power Sources 108:8

    Article  Google Scholar 

  45. Wang DY et al (2009) J Power Sources 189:624

    Article  Google Scholar 

  46. Drezen T, Kwon NH, Miners JH, Poletto L, Graetzel M (2007) J Power Sources 174:949

    Article  Google Scholar 

  47. Yamada A, Takei Y, Koizumi H, Sonoyama N, Kanno R (2006) Chem Mater 18:804

    Article  Google Scholar 

  48. Amine K, Yasuda H, Yamachi M (2000) Electrochem Solid State Lett 3:178

    Article  Google Scholar 

  49. Zhou F, Cococcioni M, Kang K, Ceder G (2004) 6:1144

    Google Scholar 

  50. Geoffroy D (2012) Phosphates

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Graf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Graf, C. (2018). Cathode materials for lithium-ion batteries. In: Korthauer, R. (eds) Lithium-Ion Batteries: Basics and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53071-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53071-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53069-6

  • Online ISBN: 978-3-662-53071-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics