Skip to main content
Log in

Recent advances in layered LiNi x CoyMn1−xy O2 cathode materials for lithium ion batteries

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Lithium cobalt oxide, LiCoO2, has been the most widely used cathode material in commercial lithium ion batteries. Nevertheless, cobalt has economic and environmental problems that leave the door open to exploit alternative cathode materials, among which LiNi x CoyMn1 − x − y O2 may have improved performances, such as thermal stability, due to the synergistic effect of the three ions. Recently, intensive effort has been directed towards the development of LiNi x Co y Mn1 − x − y O2 as a possible replacement for LiCoO2. Recent advances in layered LiNi x CoyMn1 − x − y O2 cathode materials are summarized in this paper. The preparation and the performance are reviewed, and the future promising cathode materials are also prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Armstrong AR, Bruce PG (1996) Nature 381:499 doi:10.1038/381499a0

    Article  CAS  Google Scholar 

  2. Capitaine F, Gravereau P, Delmas C (1996) Solid State Ion 89:197 doi:10.1016/0167-2738(96)00369-4

    Article  CAS  Google Scholar 

  3. Huang YY, Zhou HH, Chen JT (2005) Prog Inorg Chem 17:406

    CAS  Google Scholar 

  4. Carl JR, Bo S (2003) Sci Total Environ 302:167 doi:10.1016/S0048-9697(02)00293-0

    Article  Google Scholar 

  5. Jiang J, Dahn JR (2004) Electrochem Commun 6:39–43 doi:10.1016/j.elecom.2003.10.011

    Article  CAS  Google Scholar 

  6. Macneil DD, Dahn JR (2003) J Electrochem Soc 150:A21 doi:10.1149/1.1521756

    Article  CAS  Google Scholar 

  7. Whittingham MS (2004) Chem Rev 104:4271 doi:10.1021/cr020731c

    Article  CAS  Google Scholar 

  8. Liu YX (2005) Battery Bimon 35:196

    CAS  Google Scholar 

  9. Kalyani P, Kalaiselvi N (2005) Sci Technol Adv Mater 6:689 doi:10.1016/j.stam.2005.06.001

    Article  CAS  Google Scholar 

  10. Delmas C, Menetrier M, Croguennec L, Saadoune I, Rougier A, Pouillerie C et al (1999) Electrochim Acta 45:243 doi:10.1016/S0013-4686(99)00208-X

    Article  CAS  Google Scholar 

  11. Spahr ME, Novak P, Schnyder B (1998) J Electrochem Soc 145:1113 doi:10.1149/1.1838425

    Article  CAS  Google Scholar 

  12. Hwang BJ, Tsai YW, Chen CH (2003) J Mater Chem 13:1962 doi:10.1039/b301468c

    Article  CAS  Google Scholar 

  13. Armstrong AR, Bruce PG (2004) Electrochem Solid State 7:A1 doi:10.1149/1.1625591

    Article  CAS  Google Scholar 

  14. Tom AE, Marca MD (2003) J Power Sources 145:119–121 doi:10.1016/S0378-7753(03)00144-7

    Google Scholar 

  15. Shaju KM, Sabba RGV, Chowdari BVR (2002) Electrochem Commun 4:633 doi:10.1016/S1388-2481(02)00392-2

    Article  CAS  Google Scholar 

  16. Choi S, Manthiram A (2002) J Electrochem Soc 149:A1157 doi:10.1149/1.1497171

    Article  CAS  Google Scholar 

  17. Guo ZP, Konstantinov K, Wang GX (2003) J Power Sources 119:221–225 doi:10.1016/S0378-7753(03)00237-4

    Article  CAS  Google Scholar 

  18. Ammundsen B, Paulsen J (2001) Adv Mater 13:943 doi:10.1002/1521-4095(200107)13:12/13<943::AID-ADMA943>3.0.CO;2-J

    Article  CAS  Google Scholar 

  19. Stoyanov R, Zhecheva E, Alca’ntara R (2003) Solid State Ionics 161:197 doi:10.1016/S0167-2738(03)00280-7

    Article  CAS  Google Scholar 

  20. Macneil DD, Lu ZH, Dahn JR (2002) J Power Sources 108:8 doi:10.1016/S0378-7753(01)01013-8

    Article  CAS  Google Scholar 

  21. Reed J, Ceder G, Van Der Ven A (2001) Electrochem Solid-State Lett 4:A78 doi:10.1149/1.1368896

    Article  CAS  Google Scholar 

  22. Paulsen JM, Thomas CL, Dahn JR (1999) J Electrochem Soc 146:3560 doi:10.1149/1.1392514

    Article  CAS  Google Scholar 

  23. Paulsen JM, Thomas CL, Dahn JR (2000) J Electrochem Soc 147:861 doi:10.1149/1.1393283

    Article  CAS  Google Scholar 

  24. Broussely M, Perton F, Biensan P (1995) J Power Sources 54:109 doi:10.1016/0378-7753(94)02049-9

    Article  CAS  Google Scholar 

  25. Rougier A, Saadoune I, Gravereau P (1996) Solid State Ion 90:83 doi:10.1016/S0167-2738(96)00370-0

    Article  CAS  Google Scholar 

  26. Yamada S, Fujiwara M, Kanda M (1995) J Power Sources 54:209 doi:10.1016/0378-7753(94)02068-E

    Article  CAS  Google Scholar 

  27. Liu Z, Yu A, Lee JY (1999) J Power Sources 416:81–82 doi:10.1016/S0378-7753(99)00221-9

    Google Scholar 

  28. Hwang BJ, Tsai YW, Carlier D (2003) Chem Mater 15:3676 doi:10.1021/cm030299v

    Article  CAS  Google Scholar 

  29. Ohzuku T, Makimura Y (2001) Chem Lett 7:642 doi:10.1246/cl.2001.642

    Article  Google Scholar 

  30. Lu ZH, MacNeil DD, Dahn JR (2001) Electrochem Solid-State Lett 4(12):A200 doi:10.1149/1.1413182

    Article  CAS  Google Scholar 

  31. MacNeil DD, Lu Z, Dahn JR (2002) J Electrochem Soc 149:A1332 doi:10.1149/1.1505633

    Article  CAS  Google Scholar 

  32. Ngala JK, Chernova NA, Ma M (2004) J Mater Chem 14:214 doi:10.1039/b309834f

    Article  CAS  Google Scholar 

  33. Sun YK, Kang SH, Amine K (2004) Mater Res Bull 39:819 doi:10.1016/j.materresbull.2004.02.007

    Article  CAS  Google Scholar 

  34. Lu Z, Dahn JR (2001) J Electrochem Soc 148:A237 doi:10.1149/1.1350016

    Article  CAS  Google Scholar 

  35. Chen Y, Wang GX, Konstantinov K (2003) J Power Sources 184:119–2121

    Google Scholar 

  36. Ryuji S, Akihiro F, Kazuya O (2004) EP: 1447866A1

  37. Jouanneau S, Eberman KW, Krause LJ (2003) J Electrochem Soc 150:A1637 doi:10.1149/1.1622956

    Article  CAS  Google Scholar 

  38. Jin SJ, Park KS, Song CH (2005) J Power Sources 146:630 doi:10.1016/j.jpowsour.2005.03.167

    Article  CAS  Google Scholar 

  39. Jouanneau S, Macneil DD, Dahn JR (2003) J Electrochem Soc 150:A1299 doi:10.1149/1.1602077

    Article  CAS  Google Scholar 

  40. Lee MH, Kang YJ, Myung ST (2004) Electrochim Acta 50:939 doi:10.1016/j.electacta.2004.07.038

    Article  CAS  Google Scholar 

  41. Kalyani P, Kalaiselvi N, Renganathan NG (2004) Mater Res Bull 39:41 doi:10.1016/j.materresbull.2003.09.021

    Article  CAS  Google Scholar 

  42. Park SH, Yoon CS, Kang G (2004) Electrochim Acta 49:557 doi:10.1016/j.electacta.2003.09.009

    Article  CAS  Google Scholar 

  43. Albrecht S, Kümpers J, Kruft M (2003) J Power Sources 178:119–121 doi:10.1016/S0378-7753(03)00175-7

    Google Scholar 

  44. Vasanthyi R, Ruth MI, Selladurai S (2003) Inorg Chem Commun 6:953 doi:10.1016/S1387-7003(03)00159-X

    Article  CAS  Google Scholar 

  45. Hironori K, Yoshinori A, Hiroyuki K (2004) J Mater Chem 14:40 doi:10.1039/b311827d

    Article  CAS  Google Scholar 

  46. Gopukumar S, Chung KY, Kim KB (2004) Electrochim Acta 49:803 doi:10.1016/j.electacta.2003.09.034

    Article  CAS  Google Scholar 

  47. Jouanneau S, Dahn JR (2003) Chem Mater 15:495 doi:10.1021/cm020818e

    Article  CAS  Google Scholar 

  48. Paulsen JM, Mueller-Neuhaus JR, Dahn JR (2000) J Electrochem Soc 147:508 doi:10.1149/1.1393225

    Article  CAS  Google Scholar 

  49. Koyama Y, Tanaka I, Ohzuku T (2003) J Power Sources 644:119–121 doi:10.1016/S0378-7753(03)00194-0

    Google Scholar 

  50. Yabuuchi N, Ohzuku T (2003) J Power Sources 171:119–121 doi:10.1016/S0378-7753(03)00173-3

    Google Scholar 

  51. Li JG, He XM, Zhao RS (2006) J Power Sources 158:524 doi:10.1016/j.jpowsour.2005.08.026

    Article  CAS  Google Scholar 

  52. Choi J, Manthiram A (2006) J Power Sources 162:667 doi:10.1016/j.jpowsour.2006.06.031

    Article  CAS  Google Scholar 

  53. Oh SW, Park SH, Park CW (2004) Solid State Ion 171:167 doi:10.1016/j.ssi.2004.04.012

    Article  CAS  Google Scholar 

  54. Arunkumar TA, Alvarez E, Manthiram A (2007) J Electrochem Soc 154:A770 doi:10.1149/1.2745635

    Article  CAS  Google Scholar 

  55. Tran N, Croguennec L, Jordy C (2005) Solid State Ion 176:1539 doi:10.1016/j.ssi.2005.04.039

    Article  CAS  Google Scholar 

  56. Yoshio M, Noguchi H, Itoh J (2000) J Power Sources 90:176 doi:10.1016/S0378-7753(00)00407-9

    Article  CAS  Google Scholar 

  57. Shaju KM, Subba Rao GV, Chowdari BVR (2002) Electrochim Acta 48:145 doi:10.1016/S0013-4686(02)00593-5

    Article  CAS  Google Scholar 

  58. Sun YC, Ouyang CY, Wang ZX (2004) J Electrochem Soc 151:A504 doi:10.1149/1.1647574

    Article  CAS  Google Scholar 

  59. Deb A, Bergmann U, Cramer SP, Cairnsa EJ (2007) J Electrochem Soc 154:A534 doi:10.1149/1.2720762

    Article  CAS  Google Scholar 

  60. Gao Y, Yakovleva M, Wang HH (2003) US-6–620–400

  61. Chen CH, Wang CJ, Hwang BJ (2005) J Power Sources 146:626 doi:10.1016/j.jpowsour.2005.03.079

    Article  CAS  Google Scholar 

  62. Ohzuku T, Makimura Y (2001) Chem Lett 7:642 doi:10.1246/cl.2001.642

    Article  Google Scholar 

  63. Gao YA, Yakovleva MV, Ebner WB (1998) Electrochem Solid-State Lett 1:117 doi:10.1149/1.1390656

    Article  CAS  Google Scholar 

  64. Cho YH, Park SM, Yoshio M (2005) J Power Sources 142:306 doi:10.1016/j.jpowsour.2004.10.016

    Article  CAS  Google Scholar 

  65. Lu ZH, Macneil DD, Dahn JR (2001) Electrochem Solid-State Lett 4:A191 doi:10.1149/1.1407994

    Article  CAS  Google Scholar 

  66. Ngala JK, Chernova NA, Whittingham MS (2004) J Mater Chem 14:214 doi:10.1039/b309834f

    Article  CAS  Google Scholar 

  67. Deb A, Bergmann U, Cramer SP (2005) J Appl Phys 97:113523 doi:10.1063/1.1921328

    Article  CAS  Google Scholar 

  68. Kim JM, Hoon-Taek C (2004) Electrochim Acta 49:3573 doi:10.1016/j.electacta.2004.03.025

    Article  CAS  Google Scholar 

  69. Paulsen M, Thomas CL, Dahn JR (2000) J Electrochem Soc 147:861 doi:10.1149/1.1393283

    Article  CAS  Google Scholar 

  70. Kim JH, Park CW, Sun YK (2003) Solid State Ion 164:43 doi:10.1016/j.ssi.2003.08.003

    Article  CAS  Google Scholar 

  71. Kim JS, Johnson CS, Thackeray MM (2002) Electrochem Commun 4:205 doi:10.1016/S1388-2481(02)00251-5

    Article  CAS  Google Scholar 

  72. Jouanneau S, Macneil DD, Dahn JR (2003) J Electrochem Soc 150:A1299 doi:10.1149/1.1602077

    Article  CAS  Google Scholar 

  73. Jouanneau S, Eberman KW, Dahn JR (2003) J Electrochem Soc 150:A1637 doi:10.1149/1.1622956

    Article  CAS  Google Scholar 

  74. Masaki Y, Hideyuki N, Okada TM (2000) J Power Sources 90:176 doi:10.1016/S0378-7753(00)00407-9

    Article  Google Scholar 

  75. Saadoune I, Delmas C (1998) J Solid State Chem 136:8 doi:10.1006/jssc.1997.7599

    Article  CAS  Google Scholar 

  76. Venkatraman S, Choi J, Manthiram A (2004) Electrochem Commun 6:832 doi:10.1016/j.elecom.2004.06.004

    Article  CAS  Google Scholar 

  77. He P, Wang HR, Qia L (2006) J Power Sources 160:627 doi:10.1016/j.jpowsour.2006.01.053

    Article  CAS  Google Scholar 

  78. Li JG, Wan CR, Yang DP (2003) Acta Phys-Chim Sin 19:1030

    CAS  Google Scholar 

  79. Liu JJ, Qiu WH, Yu LY (2006) Electrochem 12:373

    CAS  Google Scholar 

  80. Luo XF, Wang XY, Liao L (2006) J Power Sources 161:601 doi:10.1016/j.jpowsour.2006.03.090

    Article  CAS  Google Scholar 

  81. Choi J, Manthiram A (2005) Solid State Ion 176:2251 doi:10.1016/j.ssi.2005.06.004

    Article  CAS  Google Scholar 

  82. Cao H, Zhang Y, Zhang J (2005) Solid State Ion 176:1207 doi:10.1016/j.ssi.2005.02.023

    Article  CAS  Google Scholar 

  83. Su YC, Xie W, Yu P (2005) Mater Sci Eng Powder Metall 10:149

    Google Scholar 

  84. Kang SH, Kim J, Stoll ME (2002) J Power Sources 112:41 doi:10.1016/S0378-7753(02)00360-9

    Article  CAS  Google Scholar 

  85. Chen Y, Wang GX, Konstantinov K (2003) J Power Sources 184:119–121 doi:10.1016/S0378-7753(03)00176-9

    Google Scholar 

  86. Cho TH, Shiosaki Y, Noguchi H (2006) J Power Sources 159:1322 doi:10.1016/j.jpowsour.2005.11.080

    Article  CAS  Google Scholar 

  87. Wang GX, Bewlay S, Yao J (2003) J Power Sources 189:119–121 doi:10.1016/S0378-7753(03)00177-0

    Google Scholar 

  88. Li DC, Noguchi H, Yoshio M (2004) Electrochim Acta 50:427 doi:10.1016/j.electacta.2004.04.045

    Article  CAS  Google Scholar 

  89. Na SH, Kim HS, Moon SI (2005) Solid State Ion 176:313 doi:10.1016/j.ssi.2004.08.016

    Article  CAS  Google Scholar 

  90. Li P, Han ES, Tan BS (2005) Chin J Appl Chem 22:304

    CAS  Google Scholar 

  91. Son JT, Cairns EJ (2006) Electrochem Solid-State Lett 9:A27 doi:10.1149/1.2136248

    Article  CAS  Google Scholar 

  92. Son JT, Cairns EJ (2007) J Power Sources 166:343 doi:10.1016/j.jpowsour.2006.12.069

    Article  CAS  Google Scholar 

  93. Liao PY, Duh JG, Sheen SR (2005) J Power Sources 143:212 doi:10.1016/j.jpowsour.2004.12.001

    Article  CAS  Google Scholar 

  94. Xiao HN, Yi WW, Hu PF (2006) China ceram Ind 13:1

    CAS  Google Scholar 

  95. Gan CL, Hu XH, Zhan H (2005) Solid State Ion 176:687 doi:10.1016/j.ssi.2004.10.021

    Article  CAS  Google Scholar 

  96. Wang X, Yang XH, Zheng HG (2005) Solid State Ion 176:1043 doi:10.1016/j.ssi.2005.01.003

    Article  CAS  Google Scholar 

  97. Park SH, Oh SW, Sun YK (2005) J Power Sources 146:622 doi:10.1016/j.jpowsour.2005.03.078

    Article  CAS  Google Scholar 

  98. Kim GH, Myung ST, Bang HJ (2004) Electrochem Solid-State Lett 7:A477 doi:10.1149/1.1809554

    Article  CAS  Google Scholar 

  99. Meng YS, Wu YW, Hwang BJ (2004) J Electrochem Soc 151:A1134 doi:10.1149/1.1765032

    Article  CAS  Google Scholar 

  100. Li DC, Sasaki Y, Kobayakawa K (2006) J Power Sources 157:488 doi:10.1016/j.jpowsour.2005.08.023

    Article  CAS  Google Scholar 

  101. Li JG, He XM, Zhao RS (2006) J Power Sources 158:524 doi:10.1016/j.jpowsour.2005.08.026

    Article  CAS  Google Scholar 

  102. Kang SH, Amine K (2005) J Power Sources 146:654 doi:10.1016/j.jpowsour.2005.03.152

    Article  CAS  Google Scholar 

  103. Kim GH, Kim JH, Myung ST (2005) J Electrochem Soc 152:A1707 doi:10.1149/1.1952747

    Article  CAS  Google Scholar 

  104. Woo SU, Park BC, Yoon CS (2007) J Electrochem Soc 154:A649 doi:10.1149/1.2735916

    Article  CAS  Google Scholar 

  105. Cho J, Kim YW, Kim B (2003) Angew Chem Int Ed 42:1618 doi:10.1002/anie.200250452

    Article  CAS  Google Scholar 

  106. Kim HS, Kong M, Kim K (2007) J Power Sources 171:917 doi:10.1016/j.jpowsour.2007.06.028

    Article  CAS  Google Scholar 

  107. Jouanneau S, Bahmet W, Eberman KW (2004) J Electrochem Soc 151:A1789 doi:10.1149/1.1799411

    Article  CAS  Google Scholar 

  108. Kim Y, Kim HS, Martin SW (2006) Electrochim Acta 52:1316 doi:10.1016/j.electacta.2006.07.033

    Article  CAS  Google Scholar 

  109. Jiang SB, Kang SH, Amine K (2005) Electrochim Acta 50:4168 doi:10.1016/j.electacta.2005.01.037

    Article  CAS  Google Scholar 

  110. Li JG, Fan MS, He XM (2006) Ionics 12:215 doi:10.1007/s11581-006-0034-2

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The financial support from the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality, the Beijing Municipal Foundation for Excellent Scholar (20051D0500403), the National Basic Research Program of China (973 Program, project No.:2007CB209705), LG Chem, and the Basic Research Fund of the Key Laboratory of Vacuum Metallurgy of Non-Ferrous Metals of Yunnan, China, are highly appreciated. The authors also highly appreciate the comments for the revision from the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangming He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Li, J., He, X. et al. Recent advances in layered LiNi x CoyMn1−xy O2 cathode materials for lithium ion batteries. J Solid State Electrochem 13, 1157–1164 (2009). https://doi.org/10.1007/s10008-008-0671-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0671-7

Keywords

Navigation