Skip to main content

State Evolution and Trace-Preserving Completely Positive Maps

  • Chapter
  • First Online:
Quantum Information Theory

Part of the book series: Graduate Texts in Physics ((GTP))

  • 5871 Accesses

Abstract

Until now, we have considered only quantum states and quantum measurement as quantum concepts. In order to prefer information processing with quantum systems, we should manipulate a wider class of state operations. This chapter examines what kinds of operations are allowed on quantum systems. The properties of these operations will also be examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More precisely, we can implement only a finite number of unitary matrices in a finite amount of time. For a rigorous proof, we must approximate the respective TP-CP maps by a finite number of unitary matrices and evaluate the level of these approximations.

References

  1. W.F. Stinespring, Positive functions on C-algebras. Proc. Am. Math. Soc. 6, 211 (1955)

    Google Scholar 

  2. K. Kraus, in States, Effects, and Operations, vol. 190, Lecture Notes in Physics (Springer, Berlin Heidelberg New York, 1983)

    Google Scholar 

  3. M.-D. Choi, Completely positive linear maps on complex matrices. Lin. Alg. Appl. 10, 285–290 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Fujiwara, P. Algoet, One-to-one parametrization of quantum channels. Phys. Rev. A 59, 3290–3294 (1999)

    Article  ADS  Google Scholar 

  5. A. Jamiołkowski, Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3, 275–278 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A. Fujiwara, Mathematics of quantum channels. Suurikagaku 474, 28–35 (2002). (in Japanese)

    Google Scholar 

  7. G.M. D’Ariano, P.L. Presti, Imprinting complete information about a quantum channel on its output state. Phys. Rev. Lett. 91, 047902 (2003)

    Article  ADS  Google Scholar 

  8. D. Aharonov, A. Kitaev, N. Nisan, Quantum Circuits with Mixed States Proceedings of the 30th Annual ACM Symposium on Theory of Computation (STOC), 20–30 (1997)

    Google Scholar 

  9. M. Horodecki, P. Shor, M.B. Ruskai, Entanglement breaking channels. Rev. Math. Phys. 15, 1–13 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Horodecki, P. Horodecki, R. Horodecki, Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)

    Google Scholar 

  11. P. Horodecki, Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. N. Datta, A.S. Holevo, Y. Suhov, Additivity for transpose depolarizing channels. Int. J. Quantum Inform. 4, 85 (2006)

    Article  MATH  Google Scholar 

  13. K. Matsumoto, F. Yura, Entanglement cost of antisymmetric states and additivity of capacity of some quantum channel. Jhys. A: Math. Gen. 37, L167–L171 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  14. R.F. Werner, A.S. Holevo, Counterexample to an additivity conjecture for output purity of quantum channels. J. Math. Phys. 43, 4353 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. M.B. Ruskai, S. Szarek, E. Werner, An analysis of completely-positive trace-preserving maps on 2\(\times \)2 matrices. Lin. Alg. Appl. 347, 159–187 (2002)

    Article  MATH  Google Scholar 

  16. M.B. Ruskai, Qubit entanglement breaking channels. Rev. Math. Phys. 15, 643–662 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Fujiwara, H. Nagaoka, Operational capacity and pseudoclassicality of a quantum channel. IEEE Trans. Inf. Theory 44, 1071–1086 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Lindblad, Completely positive maps and entropy inequalities. Comm. Math. Phys. 40, 147–151 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. A. Uhlmann, Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory. Comm. Math. Phys. 54, 21–32 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. G. Lindblad, Expectations and entropy inequalities for finite quantum systems. Comm. Math. Phys. 39, 111–119 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. F. Hiai, D. Petz, The golden-thompson trace inequality is complemented. Lin. Alg. Appl. 181, 153–185 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Golden, Lower bounds for Helmholtz function. Phys. Rev. 137, B1127–B1128 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. K. Symanzik, Proof and refinements of an inequality of Feynman. J. Math. Phys. 6, 1155–1156 (1965)

    Article  ADS  Google Scholar 

  24. C.J. Thompson, Inequality with applications in statistical mechanics. J. Math. Phys. 6, 1812–1813 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  25. A. Uhlmann, The ‘transition probability’ in the state space of *-algebra. Rep. Math. Phys. 9, 273–279 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. R. Jozsa, Fidelity for mixed quantum states. J. Mod. Opt. 41(12), 2315–2323 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. H. Barnum, C.A. Fuchs, R. Jozsa, B. Schumacher, A general fidelity limit for quantum channels. Phys. Rev. A 54, 4707–4711 (1996)

    Article  ADS  Google Scholar 

  28. M.B. Ruskai, Beyond strong subadditivity? improved bounds on the contraction of generalized relative entropy. Rev. Math. Phys. 6, 1147–1161 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. R.L. Frank, E.H. Lieb, Monotonicity of a relative Renyi entropy. J. Math. Phys. 54, 122201 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. F. Hiai, D. Petz, The proper formula for relative entropy and its asymptotics in quantum probability. Comm. Math. Phys. 143, 99–114 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. E. Lieb, M.B. Ruskai, A fundamental property of quantum mechanical entropy. Phys. Rev. Lett. 30, 434–436 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  32. E. Lieb, M.B. Ruskai, Proof of the strong subadditivity of quantum mechanical entropy. J. Math. Phys. 14, 1938–1941 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  33. P. Hayden, R. Jozsa, D. Petz, A. Winter, Structure of states which satisfy strong subadditivity of quantum entropy with equality. Comm. Math. Phys. 246, 359–374 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. M. Fannes, A continuity property of the entropy density for spin lattice systems. Comm. Math. Phys. 31, 291–294 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. W. Ochs, A new axiomatic characterization of the von Neumann entropy. Rep. Math. Phys. 8(1), 109–120 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  36. H. Araki, E. Lieb, Entropy inequalities. Comm. Math. Phys. 18, 160–170 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  37. E. Lieb, Bull. Am. Math. Soc. 81, 1–13 (1975)

    Article  Google Scholar 

  38. R. Alicki, M. Fannes, Continuity of quantum mutual information, quant-ph/0312081 (2003)

    Google Scholar 

  39. M. Christandl, A. Winter, Squashed entanglement"-an additive entanglement measure. J. Math. Phys. 45, 829–840 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. H. Fan, A note on quantum entropy inequalities and channel capacities. J. Phys. A Math. Gen. 36, 12081–12088 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. R. König, R. Renner, C. Schaffner, The operational meaning of min- and max-entropy. IEEE Trans. Inf. Theory 55(9), 4337–4347 (2009)

    Article  MathSciNet  Google Scholar 

  42. M. Tomamichel, R. Colbeck, R. Renner, A fully quantum asymptotic equipartition property. IEEE Trans. Inf. Theory 55(12), 5840–5847 (2009)

    Article  MathSciNet  Google Scholar 

  43. S. Beigi, Sandwiched Rènyi divergence satisfies data processing inequality. J. Math. Phys. 54(12), 122202 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, M. Tomamichel, On quantum Renyi entropies: a new generalization and some properties. J. Math. Phys. 54, 122203 (2013)

    Google Scholar 

  45. M. Tomamichel, M. Berta, M. Hayashi, Relating different quantum generalizations of the conditional Rényi entropy. J. Math. Phys. 55, 082206 (2014)

    Google Scholar 

  46. A.S. Holevo, Bounds for the quantity of information transmitted by a quantum communication channel. Problemy Peredachi Informatsii, 9, 3–11 (1973) (in Russian). (English translation: Probl. Inf. Transm., 9, 177–183 (1975))

    Google Scholar 

  47. E. Lieb, Convex trace functions and the Wigner-Yanase-Dyson conjecture. Adv. Math. 11, 267–288 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  48. D. Petz, Quasi-entropies for finite quantum systems. Rep. Math. Phys. 23, 57–65 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. M.M. Wilde, A. Winter, D. Yang, Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Renyi relative entropy. Comm. Math. Phys. 331(2), 593 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. T. Ando, Convexity of certain maps on positive definite matrices and applications to Hadamard products. Lin. Alg. and Appl. 26, 203–241 (1979)

    Article  MATH  Google Scholar 

  51. J. Bergh, J. Löfström, Interpolation Spaces. (Springer-Verlag, New York, 1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Hayashi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hayashi, M. (2017). State Evolution and Trace-Preserving Completely Positive Maps. In: Quantum Information Theory. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49725-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49725-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49723-4

  • Online ISBN: 978-3-662-49725-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics