Skip to main content

The Read/Write Protocol Complex Is Collapsible

  • Conference paper
  • First Online:
LATIN 2016: Theoretical Informatics (LATIN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9644))

Included in the following conference series:

Abstract

The celebrated asynchronous computability theorem provides a characterization of the class of decision tasks that can be solved in a wait-free manner by asynchronous processes that communicate by writing and taking atomic snapshots of a shared memory. Several variations of the model have been proposed (immediate snapshots and iterated immediate snapshots), all equivalent for wait-free solution of decision tasks, in spite of the fact that the protocol complexes that arise from the different models are structurally distinct. The topological and combinatorial properties of these snapshot protocol complexes have been studied in detail, providing explanations for why the asynchronous computability theorem holds in all the models.

In reality concurrent systems do not provide processes with snapshot operations. Instead, snapshots are implemented (by a wait-free protocol) using operations that write and read individual shared memory locations. Thus, read/write protocols are also computationally equivalent to snapshot protocols. However, the structure of the read/write protocol complex has not been studied. In this paper we show that the read/write iterated protocol complex is collapsible (and hence contractible). Furthermore, we show that a distributed protocol that wait-free implements atomic snapshots in effect is performing the collapses.

Full version in arXiv 1512.05427. Partially supported by UNAM-PAPIIT grant IN107714.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots of shared memory. J. ACM 40(4), 873–890 (1993)

    Article  MATH  Google Scholar 

  2. Attiya, H., Rajsbaum, S.: The combinatorial structure of wait-free solvable tasks. SIAM J. Comput. 31(4), 1286–1313 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biran, O., Moran, S., Zaks, S.: A combinatorial characterization of the distributed 1-solvable tasks. J. Algorithms 11(3), 420–440 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asynchronous computations. In: Proceedings of the 25th Annual ACM Symposium on Theory of Computing, STOC, pp. 91–100. ACM, New York (1993)

    Google Scholar 

  5. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In: Proceedings of the 12th ACM Symposium on Principles of Distributed Computing, PODC, pp. 41–51. ACM, New York (1993)

    Google Scholar 

  6. Borowsky, E., Gafni, E.: A simple algorithmically reasoned characterization of wait-free computation (extended abstract). In: Proceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed Computing, PODC 1997, pp. 189–198. ACM, New York (1997)

    Google Scholar 

  7. Borowsky, E., Gafni, E., Lynch, N., Rajsbaum, S.: The BG distributed simulation algorithm. Distrib. Comput. 14(3), 127–146 (2001)

    Article  Google Scholar 

  8. Fischer, M., Lynch, N.A., Paterson, M.S.: Impossibility of distributed commit with one faulty process. J. ACM 32(2), 374–382 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gafni, E., Rajsbaum, S.: Recursion in distributed computing. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 362–376. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Goubault, E., Mimram, S., Tasson, C.: Iterated chromatic subdivisions are coll apsible. Appl. Categorical Struct. 23(6), 777–818 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Havlicek, J.: Computable obstructions to wait-free computability. Distrib. Comput. 13(2), 59–83 (2000)

    Article  Google Scholar 

  12. Havlicek, J.: A note on the homotopy type of wait-free atomic snapshot protocol complexes. SIAM J. Comput. 33(5), 1215–1222 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combinatorial Topology. Elsevier, Imprint Morgan Kaufmann, Boston (2013)

    MATH  Google Scholar 

  14. Herlihy, M., Rajsbaum, S.: Simulations and reductions for colorless tasks. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC 2012, pp. 253–260. ACM, New York (2012)

    Google Scholar 

  15. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability. J. ACM 46(6), 858–923 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann Publishers Inc., San Francisco (2008)

    Google Scholar 

  17. Hoest, G., Shavit, N.: Towards a topological characterization of asynchronous complexity. In: Proceedings of the 16th ACM Symposium Principles of Distributed Computing, PODC, pp. 199–208. ACM, New York (1997)

    Google Scholar 

  18. Jonsson, J.: Simplicial Complexes of Graphs. Lecture Notes in Mathematics. Springer, Heidelberg (2008). doi:10.1007/978-3-540-75859-4

    Book  MATH  Google Scholar 

  19. Kozlov, D.N.: Chromatic subdivision of a simplicial complex. Homology Homotopy Appl. 14(2), 197–209 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kozlov, D.N.: Topology of the immediate snapshot complexes. Topology Appl. 178, 160–184 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kozlov, D.N.: Topology of the view complex. Homology Homotopy Appl. 17(1), 307–319 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Loui, M.C., Abu-Amara, H.H.: Memory requirements for agreement among unreliable asynchronous processes 4, 163–183 (1987). JAI Press

    MathSciNet  Google Scholar 

  23. Rajsbaum, S., Raynal, M., Travers, C.: The iterated restricted immediate snapshot model. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 487–497. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology of public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Rajsbaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Benavides, F., Rajsbaum, S. (2016). The Read/Write Protocol Complex Is Collapsible. In: Kranakis, E., Navarro, G., Chávez, E. (eds) LATIN 2016: Theoretical Informatics. LATIN 2016. Lecture Notes in Computer Science(), vol 9644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49529-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49529-2_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49528-5

  • Online ISBN: 978-3-662-49529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics