Skip to main content

The Iterated Restricted Immediate Snapshot Model

  • Conference paper
Computing and Combinatorics (COCOON 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5092))

Included in the following conference series:

Abstract

In the Iterated Immediate Snapshot model (\({\mathit{IIS}}\)) the memory consists of a sequence of one-shot Immediate Snapshot (\(\mathit{IS}\)) objects. Processes access the sequence of \(\mathit{IS}\) objects, one-by-one, asynchronously, in a wait-free manner; any number of processes can crash. Its interest lies in the elegant recursive structure of its runs, hence of the ease to analyze it round by round. In a very interesting way, Borowsky and Gafni have shown that the \({\mathit{IIS}}\) model and the read/write model are equivalent for the wait-free solvability of decision tasks.

This paper extends the benefits of the \(\mathit{IIS}\) model to partially synchronous systems. Given a shared memory model enriched with a failure detector, what is an equivalent \(\mathit{IIS}\) model? The paper shows that an elegant way of capturing the power of a failure detector and other partially synchronous systems in the \({\mathit{IIS}}\) model is by restricting appropriately its set of runs, giving rise to the Iterated Restricted Immediate Snapshot model (\(\mathit{IRIS}\)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic Snapshots of Shared Memory. J. ACM 40(4), 873–890 (1993)

    Article  MATH  Google Scholar 

  2. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing Memory Robustly in Message Passing Systems. J. ACM 42(1), 124–142 (1995)

    Article  MATH  Google Scholar 

  3. Awerbuch, B.: Complexity of network synchronization. J. ACM 32, 804–823 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  4. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and Advanced Topics. Wiley, Chichester (2004)

    Google Scholar 

  5. Borowsky, E., Gafni, E.: Immediate Atomic Snapshots and Fast Renaming. In: Proc. of PODC 1993, pp. 41–51 (1993)

    Google Scholar 

  6. Borowsky, E., Gafni, E.: Generalized FLP Impossibility Results for t-Resilient Asynchronous Computations. In: Proc. 25th ACM STOC, pp. 91–100 (1993)

    Google Scholar 

  7. Borowsky, E., Gafni, E.: A Simple Algorithmically Reasoned Characterization of Wait-free Computations. In: Proc. 16th ACM PODC, pp. 189–198 (1997)

    Google Scholar 

  8. Chandra, T., Toueg, S.: Unreliable Failure Detectors for Reliable Distributed Systems. J. ACM 43(2), 225–267 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chandra, T., Hadzilacos, V., Toueg, S.: The Weakest Failure Detector for Solving Consensus. J. ACM 43(4), 685–722 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chaudhuri, S.: More Choices Allow More Faults: Set Consensus Problems in Totally Asynchronous Systems. Information and Computation 105, 132–158 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the Presence of Partial Synchrony. J. ACM 35(2), 288–323 (1988)

    Article  MathSciNet  Google Scholar 

  12. Gafni, E.: Round-by-round Fault Detectors: Unifying Synchrony and Asynchrony. In: Proc. 17th ACM Symp. on Principles of Distributed Computing, pp. 143–152 (1998)

    Google Scholar 

  13. Gafni, E., Rajsbaum, S., Herlihy, M.: Subconsensus Tasks: Renaming is Weaker than Set Agreement. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 329–338. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Herlihy, M., Penso, L.D.: Tight Bounds for k-Set Agreement with Limited Scope Accuracy Failure Detectors. Distributed Computing 18(2), 157–166 (2005)

    Article  Google Scholar 

  15. Herlihy, M.P., Rajsbaum, S., Tuttle, M.: Unifying Synchronous and Asynchronous Message-Passing Models. In: Proc. 17th ACM PODC, pp. 133–142 (1998)

    Google Scholar 

  16. Herlihy, M., Shavit, N.: The Topological Structure of Asynchronous Computability. J. ACM 46(6), 858–923 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Keidar, I., Shraer, A.: Timeliness, Failure-detectors, and Consensus Performance. In: Proc. 25th ACM PODC, pp. 169–178 (2006)

    Google Scholar 

  18. Mostefaoui, A., Rajsbaum, S., Raynal, M., Travers, C.: Irreducibility and Additivity of Set Agreement-oriented Failure Detector Classes. In: Proc. PODC 2006, pp. 153–162 (2006)

    Google Scholar 

  19. Rajsbaum, S., Raynal, M., Travers, C.: Failure Detectors as Schedulers. Tech Report # 1838, IRISA, Université de Rennes, France (2007)

    Google Scholar 

  20. Rajsbaum, S., Raynal, M., Travers, C.: The Iterated Restricted Immediate Snapshot Model. Tech Report # 1874, IRISA, Université de Rennes, France (2007)

    Google Scholar 

  21. Saks, M., Zaharoglou, F.: Wait-Free k-Set Agreement is Impossible: The Topology of Public Knowledge. SIAM Journal on Computing 29(5), 1449–1483 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Völzer, H.: On Conspiracies and Hyperfairness in Distributed Computing. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 33–47. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Yang, J., Neiger, G., Gafni, E.: Structured Derivations of Consensus Algorithms for Failure Detectors. In: Proc. 17th ACM PODC, pp. 297–308 (1998)

    Google Scholar 

  24. Zieliński, P.: Anti-Omega: the Weakest Failure Detector for Set Agreement. Tech Rep # 694, University of Cambridge (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Xiaodong Hu Jie Wang

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rajsbaum, S., Raynal, M., Travers, C. (2008). The Iterated Restricted Immediate Snapshot Model. In: Hu, X., Wang, J. (eds) Computing and Combinatorics. COCOON 2008. Lecture Notes in Computer Science, vol 5092. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69733-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69733-6_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69732-9

  • Online ISBN: 978-3-540-69733-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics