Skip to main content

Functional Dendritic Polymer-Based Nanoscale Vehicles for Imaging-Guided Cancer Therapy

  • Chapter
  • First Online:
Advances in Nanotheranostics I

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 6))

  • 1303 Accesses

Abstract

The quest for highly efficient and accurate diagnosis and specific therapy approaches has become the key factor for successful cancer treatment. Over recent decades, with the advancements in the fields of nanotechnology and biomaterials, functional nanomaterials have been developed as nanocarriers for cancer diagnosis and therapy. Unlike the traditional low-molecular-weight imaging probes and therapeutic agents, early clinical results showed that nanocarriers with imaging and therapeutic agents could result in increased accumulation in tumor, increased signal intensity, enhanced anticancer efficacy, and reduced side effects owing to the passive targeting features of nanoparticles via enhanced permeability and retention (EPR) effect. Recently, new nanomedicine enables the incorporation of imaging agents and anticancer agents in one system, namely, theranostic nanomedicine, which combines both therapeutic and diagnostic capabilities in a single entity for personalized medicine. Those novel nanosystems for cancer theranostics are emergent and have promising applications in concurrent molecular imaging of biomarkers, delivery of anticancer drugs, monitoring of nanosystems’ behaviors in vivo, simultaneous monitoring of the disease progression, and guidance of therapeutic outcomes. Biodegradable polymer-based theranostic nanosystems have demonstrated great potential clinical impact for the foreseeable future, due to their good biocompatibility and flexible chemistry. Dendritic polymers are a class of well-defined macromolecules with branching units, precise structures, low polydispersity, controllable nanoscale size, as well as highly adaptable and flexible surface chemistry. These unique features have proposed dendritic polymers as nanoscale imaging agents, drug delivery systems, and theranostic nanosystems for cancer treatment. This chapter highlights the advantages of dendritic polymer-based theranostic nanosystems and the emergent concept of theranostics for the safe and effective tumor treatment in the next generation nanomedicine. The novel developments of dendritic polymer-based theranostic nanosystems described here provide great potential to achieve better cancer therapeutic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437

    Article  Google Scholar 

  2. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    Article  Google Scholar 

  3. Cho K, Wang X, Nie S, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310–1316

    Article  Google Scholar 

  4. Yang Y, Pan D, Luo K, Li L, Gu Z (2013) Biodegradable and amphiphilic block copolymer–doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy. Biomaterials 34:8430–8443

    Article  Google Scholar 

  5. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    Article  Google Scholar 

  6. Kroon J, Metselaar JM, Storm G, van der Pluijm G (2014) Liposomal nanomedicines in the treatment of prostate cancer. Cancer Treat Rev 40:578–584

    Article  Google Scholar 

  7. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Futur Med 2:681–693

    Google Scholar 

  8. Kam NWS, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 102:11600–11605

    Article  Google Scholar 

  9. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  Google Scholar 

  10. Vicent MJ, Greco F, Nicholson RI, Paul A, Griffiths PC, Duncan R (2005) Polymer therapeutics designed for a combination therapy of hormone‐dependent cancer. Angew Chem 117:4129–4134

    Article  Google Scholar 

  11. Li C, Yu D-F, Newman RA, Cabral F, Stephens LC, Hunter N, Milas L, Wallace S (1998) Complete regression of well-established tumors using a novel water-soluble poly (L-glutamic acid)-paclitaxel conjugate. Cancer Res 58:2404–2409

    Google Scholar 

  12. Hreczuk-Hirst D, Chicco D, German L, Duncan R (2001) Dextrins as potential carriers for drug targeting: tailored rates of dextrin degradation by introduction of pendant groups. Int J Pharm 230:57–66

    Article  Google Scholar 

  13. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701

    Article  Google Scholar 

  14. Gillies ER, Frechet JM (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10:35–43

    Article  Google Scholar 

  15. Patri AK, Majoros IJ, Baker JR (2002) Dendritic polymer macromolecular carriers for drug delivery. Curr Opin Chem Biol 6:466–471

    Article  Google Scholar 

  16. Liu M, Fréchet JM (1999) Designing dendrimers for drug delivery. Pharm Sci Technol Today 2:393–401

    Article  Google Scholar 

  17. Tomalia D, Reyna L, Svenson S (2007) Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 35:61

    Article  Google Scholar 

  18. Svenson S (2009) Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 71:445–462

    Article  Google Scholar 

  19. Berna M, Dalzoppo D, Pasut G, Manunta M, Izzo L, Jones AT, Duncan R, Veronese FM (2006) Novel monodisperse PEG-dendrons as new tools for targeted drug delivery: synthesis, characterization and cellular uptake. Biomacromolecules 7:146–153

    Article  Google Scholar 

  20. She W, Li N, Luo K, Guo C, Wang G, Geng Y, Gu Z (2013) Dendronized heparin − doxorubicin conjugate based nanoparticle as pH-responsive drug delivery system for cancer therapy. Biomaterials 34:2252–2264

    Article  Google Scholar 

  21. Mo B, Liu H, Zhou X, Zhao Y (2015) Facile synthesis of photolabile dendritic-unit-bridged hyperbranched graft copolymers for stimuli-triggered topological transition and controlled release of Nile red. Polym Chem 6:3489–3501

    Article  Google Scholar 

  22. Liu J, Pang Y, Huang W, Zhu X, Zhou Y, Yan D (2010) Self-assembly of phospholipid-analogous hyperbranched polymers nanomicelles for drug delivery. Biomaterials 31:1334–1341

    Article  Google Scholar 

  23. Paleos CM, Tsiourvas D, Sideratou Z, Tziveleka L-A (2010) Drug delivery using multifunctional dendrimers and hyperbranched polymers. Expert Opin Drug Deliv 7:1387–1398

    Article  Google Scholar 

  24. Fischer M, Vögtle F (1999) Dendrimers: from design to application—a progress report. Angew Chem Int Ed 38:884–905

    Article  Google Scholar 

  25. Bosman A, Janssen H, Meijer E (1999) About dendrimers: structure, physical properties, and applications. Chem Rev 99:1665–1688

    Article  Google Scholar 

  26. Tomalia D, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132

    Article  Google Scholar 

  27. Esfand R, Tomalia DA (2001) Poly(amidoamine)(PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6:427–436

    Article  Google Scholar 

  28. Darbre T, Reymond J-L (2006) Peptide dendrimers as artificial enzymes, receptors, and drug-delivery agents. Acc Chem Res 39:925–934

    Article  Google Scholar 

  29. Kobayashi H, Brechbiel MW (2005) Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev 57:2271–2286

    Article  Google Scholar 

  30. Konda SD, Aref M, Wang S, Brechbiel M, Wiener EC (2001) Specific targeting of folate–dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. Magn Reson Mater Phys Biol Med 12:104–113

    Article  Google Scholar 

  31. Kobayashi H, Brechbiel MW (2004) Dendrimer-based nanosized MRI contrast agents. Curr Pharm Biotechnol 5:539–549

    Article  Google Scholar 

  32. Patri AK, Kukowska-Latallo JF, Baker JR Jr (2005) Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 57:2203–2214

    Article  Google Scholar 

  33. Tang MX, Redemann CT, Szoka FC (1996) In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem 7:703–714

    Article  Google Scholar 

  34. Dufès C, Uchegbu IF, Schätzlein AG (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev 57:2177–2202

    Article  Google Scholar 

  35. Kolhe P, Khandare J, Pillai O, Kannan S, Lieh-Lai M, Kannan RM (2006) Preparation, cellular transport, and activity of polyamidoamine-based dendritic nanodevices with a high drug payload. Biomaterials 27:660–669

    Article  Google Scholar 

  36. Han L, Huang R, Li J, Liu S, Huang S, Jiang C (2011) Plasmid pORF-hTRAIL and doxorubicin co-delivery targeting to tumor using peptide-conjugated polyamidoamine dendrimer. Biomaterials 32:1242–1252

    Article  Google Scholar 

  37. Hu J, Su Y, Zhang H, Xu T, Cheng Y (2011) Design of interior-functionalized fully acetylated dendrimers for anticancer drug delivery. Biomaterials 32:9950–9959

    Article  Google Scholar 

  38. D’Emanuele A, Attwood D (2005) Dendrimer–drug interactions. Adv Drug Deliv Rev 57:2147–2162

    Article  Google Scholar 

  39. Kannan RM, Nance E, Kannan S, Tomalia DA (2014) Emerging concepts in dendrimer‐based nanomedicine: from design principles to clinical applications. J Intern Med 276:579–617

    Article  Google Scholar 

  40. Shah ND, Parekh HS, Steptoe RJ (2014) Asymmetric peptide dendrimers are effective linkers for antibody-mediated delivery of diverse payloads to B cells in vitro and in vivo. Pharm Res 31:3150–3160

    Article  Google Scholar 

  41. Medina SH, El-Sayed ME (2009) Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev 109:3141

    Article  Google Scholar 

  42. Khandare JJ, Jayant S, Singh A, Chandna P, Wang Y, Vorsa N, Minko T (2006) Dendrimer versus linear conjugate: influence of polymeric architecture on the delivery and anticancer effect of paclitaxel. Bioconjug Chem 17:1464–1472

    Article  Google Scholar 

  43. Kopeček J, Kopečková P, Minko T, Lu Z-R, Peterson C (2001) Water soluble polymers in tumor targeted delivery. J Control Release 74:147–158

    Article  Google Scholar 

  44. Kopeček J, Kopečková P, Minko T, Lu Z-R (2000) HPMA copolymer–anticancer drug conjugates: design, activity, and mechanism of action. Eur J Pharm Biopharm 50:61–81

    Article  Google Scholar 

  45. Tekade RK, Kumar PV, Jain NK (2008) Dendrimers in oncology: an expanding horizon. Chem Rev 109:49–87

    Article  Google Scholar 

  46. Picard FJ, Bergeron MG (2002) Rapid molecular theranostics in infectious diseases. Drug Discov Today 7:1092–1101

    Article  Google Scholar 

  47. Baum RP, Kulkarni HR (2012) Theranostics: from molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapy-the Bad Berka experience. Theranostics 2:437

    Article  Google Scholar 

  48. Mashal A, Sitharaman B, Li X, Avti PK, Sahakian AV, Booske JH, Hagness SC (2010) Toward carbon-nanotube-based theranostic agents for microwave detection and treatment of breast cancer: enhanced dielectric and heating response of tissue-mimicking materials. Biomed Eng IEEE Trans 57:1831–1834

    Article  Google Scholar 

  49. Ho D, Sun X, Sun S (2011) Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res 44:875–882

    Article  Google Scholar 

  50. Singh SP (2011) Multifunctional magnetic quantum dots for cancer theranostics. J Biomed Nanotechnol 7:95–97

    Article  Google Scholar 

  51. Lee JE, Lee N, Kim T, Kim J, Hyeon T (2011) Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44:893–902

    Article  Google Scholar 

  52. Cheng S-H, Lee C-H, Yang C-S, Tseng F-G, Mou C-Y, Lo L-W (2009) Mesoporous silica nanoparticles functionalized with an oxygen-sensing probe for cell photodynamic therapy: potential cancer theranostics. J Mater Chem 19:1252–1257

    Article  Google Scholar 

  53. Han X-J, Sun L-F, Nishiyama Y, Feng B, Michiue H, Seno M, Matsui H, Tomizawa K (2013) Theranostic protein targeting ErbB2 for bioluminescence imaging and therapy for cancer. PLoS One 8:e75288

    Article  Google Scholar 

  54. Al-Jamal WT, Kostarelos K (2011) Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 44:1094–1104

    Article  Google Scholar 

  55. Krasia-Christoforou T, Georgiou TK (2013) Polymeric theranostics: using polymer-based systems for simultaneous imaging and therapy. J Mater Chem B 1:3002–3025

    Article  Google Scholar 

  56. Khandare J, Calderón M, Dagia NM, Haag R (2012) Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. Chem Soc Rev 41:2824–2848

    Article  Google Scholar 

  57. Calderón M, Quadir MA, Strumia M, Haag R (2010) Functional dendritic polymer architectures as stimuli-responsive nanocarriers. Biochimie 92:1242–1251

    Article  Google Scholar 

  58. Quadir MA, Haag R (2012) Biofunctional nanosystems based on dendritic polymers. J Control Release 161:484–495

    Article  Google Scholar 

  59. Dong R, Zhou Y, Zhu X (2014) Supramolecular dendritic polymers: from synthesis to applications. Acc Chem Res 47:2006–2016

    Article  Google Scholar 

  60. Tomalia DA, Christensen JB, Boas U (2012) Dendrimers, dendrons, and dendritic polymers: discovery, applications, and the future. Cambridge University Press, New York

    Book  Google Scholar 

  61. Almutairi A, Rossin R, Shokeen M, Hagooly A, Ananth A, Capoccia B, Guillaudeu S, Abendschein D, Anderson CJ, Welch MJ (2009) Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci 106:685–690

    Article  Google Scholar 

  62. Almutairi A, Guillaudeu SJ, Berezin MY, Achilefu S, Fréchet JM (2008) Biodegradable pH-sensing dendritic nanoprobes for near-infrared fluorescence lifetime and intensity imaging. J Am Chem Soc 130:444–445

    Article  Google Scholar 

  63. Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15:171–185

    Article  Google Scholar 

  64. Reichert S, Calderón M, Licha K, Haag R (2012) Multivalent dendritic architectures for theranostics. In: Swami A, Shi J, Gadde S, Votruba AR, Kolishetti N, Farokhzad O (eds) Multifunctional nanoparticles for drug delivery applications. Springer, New York, pp 315–344

    Google Scholar 

  65. Luo K, Liu G, He B, Wu Y, Gong Q, Song B, Ai H, Gu Z (2011) Multifunctional gadolinium-based dendritic macromolecules as liver targeting imaging probes. Biomaterials 32:2575–2585

    Article  Google Scholar 

  66. Luo K, Liu G, Zhang X, She W, He B, Nie Y, Li L, Wu Y, Zhang Z, Gong Q (2009) Functional L-lysine dendritic macromolecules as liver-imaging probes. Macromol Biosci 9:1227–1236

    Article  Google Scholar 

  67. Luo K, Li C, Wang G, Nie Y, He B, Wu Y, Gu Z (2011) Peptide dendrimers as efficient and biocompatible gene delivery vectors: synthesis and in vitro characterization. J Control Release 155:77–87

    Article  Google Scholar 

  68. Luo K, Li C, Li L, She W, Wang G, Gu Z (2012) Arginine functionalized peptide dendrimers as potential gene delivery vehicles. Biomaterials 33:4917–4927

    Article  Google Scholar 

  69. Luo K, Liu G, She W, Wang Q, Wang G, He B, Ai H, Gong Q, Song B, Gu Z (2011) Gadolinium-labeled peptide dendrimers with controlled structures as potential magnetic resonance imaging contrast agents. Biomaterials 32:7951–7960

    Article  Google Scholar 

  70. Jain K, Kesharwani P, Gupta U, Jain N (2010) Dendrimer toxicity: let’s meet the challenge. Int J Pharm 394:122–142

    Article  Google Scholar 

  71. Duncan R, Izzo L (2005) Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 57:2215–2237

    Article  Google Scholar 

  72. Chen H-T, Neerman MF, Parrish AR, Simanek EE (2004) Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc 126:10044–10048

    Article  Google Scholar 

  73. Kojima C, Kono K, Maruyama K, Takagishi T (2000) Synthesis of polyamidoamine dendrimers having poly (ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug Chem 11:910–917

    Article  Google Scholar 

  74. Margerum LD, Campion BK, Koo M, Shargill N, Lai J-J, Marumoto A, Sontum PC (1997) Gadolinium(III) DO3A macrocycles and polyethylene glycol coupled to dendrimers effect of molecular weight on physical and biological properties of macromolecular magnetic resonance imaging contrast agents. J Alloys Compd 249:185–190

    Article  Google Scholar 

  75. Boyd BJ, Kaminskas LM, Karellas P, Krippner G, Lessene R, Porter CJ (2006) Cationic poly-L-lysine dendrimers: pharmacokinetics, biodistribution, and evidence for metabolism and bioresorption after intravenous administration to rats. Mol Pharm 3:614–627

    Article  Google Scholar 

  76. Dong Y, Gunning P, Cao H, Mathew A, Newland B, Saeed AO, Magnusson JP, Alexander C, Tai H, Pandit A (2010) Dual stimuli responsive PEG based hyperbranched polymers. Polym Chem 1:827–830

    Article  Google Scholar 

  77. Dong Y, Saeed AO, Hassan W, Keigher C, Zheng Y, Tai H, Pandit A, Wang W (2012) “One‐step” preparation of thiol‐Ene clickable PEG‐based thermoresponsive hyperbranched copolymer for in situ crosslinking hybrid hydrogel. Macromol Rapid Commun 33:120–126

    Article  Google Scholar 

  78. Liu B, Kazlauciunas A, Guthrie JT, Perrier S (2005) One-pot hyperbranched polymer synthesis mediated by reversible addition fragmentation chain transfer (RAFT) polymerization. Macromolecules 38:2131–2136

    Article  Google Scholar 

  79. Zargar A, Chang K, Taite LJ, Schork FJ (2011) Mathematical modeling of hyperbranched water‐soluble polymers with applications in drug delivery. Macromol React Eng 5:373–384

    Article  Google Scholar 

  80. Sonvico F, Mornet S, Vasseur S, Dubernet C, Jaillard D, Degrouard J, Hoebeke J, Duguet E, Colombo P, Couvreur P (2005) Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjug Chem 16:1181–1188

    Article  Google Scholar 

  81. Frauenrath H (2005) Dendronized polymers-building a new bridge from molecules to nanoscopic objects. Prog Polym Sci 30:325–384

    Article  Google Scholar 

  82. Schlüter AD, Rabe JP (2000) Dendronized polymers: synthesis, characterization, assembly at interfaces, and manipulation. Angew Chem Int Ed 39:864–883

    Article  Google Scholar 

  83. Gao M, Jia X, Kuang G, Li Y, Liang D, Wei Y (2009) Thermo-and pH-responsive dendronized copolymers of styrene and maleic anhydride pendant with poly (amidoamine) dendrons as side groups. Macromolecules 42:4273–4281

    Article  Google Scholar 

  84. Laurent BA, Grayson SM (2011) Synthesis of cyclic dendronized polymers via divergent “graft-from” and convergent click “graft-to” routes: preparation of modular toroidal macromolecules. J Am Chem Soc 133:13421–13429

    Article  Google Scholar 

  85. Rudick JG, Percec V (2008) Induced helical backbone conformations of self-organizable dendronized polymers. Acc Chem Res 41:1641–1652

    Article  Google Scholar 

  86. Percec V, Rudick JG, Peterca M, Heiney PA (2008) Nanomechanical function from self-organizable dendronized helical polyphenylacetylenes. J Am Chem Soc 130:7503–7508

    Article  Google Scholar 

  87. Bai L, Li W, Chen J, Bo F, Gao B, Liu H, Li J, Wu Y, Ba X (2013) Water‐soluble fluorescent probes based on dendronized polyfluorenes for cell imaging. Macromol Rapid Commun 34:539–547

    Article  Google Scholar 

  88. Wen S, Li K, Cai H, Chen Q, Shen M, Huang Y, Peng C, Hou W, Zhu M, Zhang G (2013) Multifunctional dendrimer-entrapped gold nanoparticles for dual mode CT/MR imaging applications. Biomaterials 34:1570–1580

    Article  Google Scholar 

  89. Chen Q, Wang H, Liu H, Wen S, Peng C, Shen M, Zhang G, Shi X (2015) Multifunctional dendrimer-entrapped gold nanoparticles modified with RGD peptide for targeted computed tomography/magnetic resonance dual-modal imaging of tumors. Anal Chem 87:3949–3956

    Article  Google Scholar 

  90. Rolfe BE, Blakey I, Squires O, Peng H, Boase NR, Alexander C, Parsons PG, Boyle GM, Whittaker AK, Thurecht KJ (2014) Multimodal polymer nanoparticles with combined 19F magnetic resonance and optical detection for tunable, targeted, multimodal imaging in vivo. J Am Chem Soc 136:2413–2419

    Article  Google Scholar 

  91. Ye L, Letchford K, Heller M, Liggins R, Guan D, Kizhakkedathu JN, Brooks DE, Jackson JK, Burt HM (2010) Synthesis and characterization of carboxylic acid conjugated, hydrophobically derivatized, hyperbranched polyglycerols as nanoparticulate drug carriers for cisplatin. Biomacromolecules 12:145–155

    Article  Google Scholar 

  92. Zou J, Shi W, Wang J, Bo J (2005) Encapsulation and controlled release of a hydrophobic drug using a novel nanoparticle‐forming hyperbranched polyester. Macromol Biosci 5:662–668

    Article  Google Scholar 

  93. Radowski MR, Shukla A, von Berlepsch H, Böttcher C, Pickaert G, Rehage H, Haag R (2007) Supramolecular aggregates of dendritic multishell architectures as universal nanocarriers. Angew Chem Int Ed 46:1265–1269

    Article  Google Scholar 

  94. Li N, Li N, Yi Q, Luo K, Guo C, Pan D, Gu Z (2014) Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent. Biomaterials 35:9529–9545

    Article  Google Scholar 

  95. Malik N, Evagorou EG, Duncan R (1999) Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs 10:767–776

    Article  Google Scholar 

  96. Pan D, Guo C, Luo K, Yi Q, Gu Z (2014) PEGylated dendritic diaminocyclohexyl-platinum (II) conjugates as pH-responsive drug delivery vehicles with enhanced tumor accumulation and antitumor efficacy. Biomaterials 35:10080–10092

    Article  Google Scholar 

  97. Park JW, Jeon OC, Kim SK, Al-Hilal TA, Jin SJ, Moon HT, Yang VC, Kim SY, Byun Y (2010) High antiangiogenic and low anticoagulant efficacy of orally active low molecular weight heparin derivatives. J Control Release 148:317–326

    Article  Google Scholar 

  98. Tang DW, Yu SH, Ho YC, Mi FL, Kuo PL, Sung HW (2010) Heparinized chitosan/poly(γ-glutamic acid) nanoparticles for multi-functional delivery of fibroblast growth factor and heparin. Biomaterials 31:9320–9332

    Article  Google Scholar 

  99. Ornelas C, Pennell R, Liebes LF, Weck M (2011) Construction of a well-defined multifunctional dendrimer for theranostics. Org Lett 13:976–979

    Article  Google Scholar 

  100. Quan Q, Xie J, Gao H, Yang M, Zhang F, Liu G, Lin X, Wang A, Eden HS, Lee S (2011) HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy. Mol Pharm 8:1669–1676

    Article  Google Scholar 

  101. Chen J, Yang M, Zhang Q, Cho EC, Cobley CM, Kim C, Glaus C, Wang LV, Welch MJ, Xia Y (2010) Gold nanocages: a novel class of multifunctional nanomaterials for theranostic applications. Adv Funct Mater 20:3684–3694

    Article  Google Scholar 

  102. Xia Y, Li W, Cobley CM, Chen J, Xia X, Zhang Q, Yang M, Cho EC, Brown PK (2011) Gold nanocages: from synthesis to theranostic applications. Acc Chem Res 44:914–924

    Article  Google Scholar 

  103. Liu Z, Liang X-J (2012) Nano-carbons as theranostics. Theranostics 2:235–237

    Article  Google Scholar 

  104. Sheng Z, Song L, Zheng J, Hu D, He M, Zheng M, Gao G, Gong P, Zhang P, Ma Y (2013) Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 34:5236–5243

    Article  Google Scholar 

  105. Chen X, Gambhir SS, Cheon J (2011) Theranostic nanomedicine. Acc Chem Res 44:841–841

    Article  Google Scholar 

  106. Kolhe P, Misra E, Kannan RM, Kannan S, Lieh-Lai M (2003) Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int J Pharm 259:143–160

    Article  Google Scholar 

  107. Backer MV, Gaynutdinov TI, Patel V, Bandyopadhyaya AK, Thirumamagal B, Tjarks W, Barth RF, Claffey K, Backer JM (2005) Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol Cancer Ther 4:1423–1429

    Article  Google Scholar 

  108. Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR (2006) PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7:572–579

    Article  Google Scholar 

  109. Yang W, Cheng Y, Xu T, Wang X (2009) Wen L-p: Targeting cancer cells with biotin–dendrimer conjugates. Eur J Med Chem 44:862–868

    Article  Google Scholar 

  110. Choi Y, Thomas T, Kotlyar A, Islam MT, Baker JR Jr (2005) Synthesis and functional evaluation of DNA-assembled polyamidoamine dendrimer clusters for cancer cell-specific targeting. Chem Biol 12:35–43

    Article  Google Scholar 

  111. Zhu B, Han Y, Sun M, Bo Z (2007) Water-soluble dendronized polyfluorenes with an extremely high quantum yield in water. Macromolecules 40:4494–4500

    Article  Google Scholar 

  112. Wang G, Pu K-Y, Zhang X, Li K, Wang L, Cai L, Ding D, Lai Y-H, Liu B (2011) Star-shaped glycosylated conjugated oligomer for two-photon fluorescence imaging of live cells. Chem Mater 23:4428–4434

    Article  Google Scholar 

  113. Santra S, Kaittanis C, Perez JM (2010) Cytochrome C encapsulating theranostic nanoparticles: a novel bifunctional system for targeted delivery of therapeutic membrane-impermeable proteins to tumors and imaging of cancer therapy. Mol Pharm 7:1209–1222

    Article  Google Scholar 

  114. Zhang C, Pan D, Luo K, Li N, Guo C, Zheng X, Gu Z (2014) Dendrimer-doxorubicin conjugate as enzyme-sensitive and polymeric nanoscale drug delivery vehicle for ovarian cancer therapy. Polym Chem 5:5227–5235

    Article  Google Scholar 

  115. Zhang C, Pan D, Luo K, She W, Guo C, Yang Y, Gu Z (2014) Peptide dendrimer–doxorubicin conjugate‐based nanoparticle as an enzyme‐responsive drug delivery system for cancer therapy. Adv Healthc Mater 8:1299–1308

    Article  Google Scholar 

  116. Chatterjee DK, Fong LS, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 60:1627–1637

    Article  Google Scholar 

  117. Zhang Y, Lovell JF (2012) Porphyrins as theranostic agents from prehistoric to modern times. Theranostics 2:905

    Article  Google Scholar 

  118. Brasseur N, Brault D, Couvreur P (1991) Adsorption of hematoporphyrin onto polyalkylcyanoacrylate nanoparticles: carrier capacity and drug release. Int J Pharm 70:129–135

    Article  Google Scholar 

  119. Taratula O, Schumann C, Naleway MA, Pang AJ, Chon KJ, Taratula O (2013) A multifunctional theranostic platform based on phthalocyanine-loaded dendrimer for image-guided drug delivery and photodynamic therapy. Mol Pharm 10:3946–3958

    Article  Google Scholar 

  120. Ideta R, Tasaka F, Jang W-D, Nishiyama N, Zhang G-D, Harada A, Yanagi Y, Tamaki Y, Aida T, Kataoka K (2005) Nanotechnology-based photodynamic therapy for neovascular disease using a supramolecular nanocarrier loaded with a dendritic photosensitizer. Nano Lett 5:2426–2431

    Article  Google Scholar 

  121. Kumar MS, Babu A, Murugesan R, Jeyasubramanian K (2012) Novel water soluble dendrimer nanocarrier for enhanced photodynamic efficacy of protoporphyrin IX. Nano Biomed Eng 4:132–138

    Google Scholar 

  122. Kojima C, Toi Y, Harada A, Kono K (2007) Preparation of poly (ethylene glycol)-attached dendrimers encapsulating photosensitizers for application to photodynamic therapy. Bioconjug Chem 18:663–670

    Article  Google Scholar 

  123. Kono K, Nakashima S, Kokuryo D, Aoki I, Shimomoto H, Aoshima S, Maruyama K, Yuba E, Kojima C, Harada A (2011) Multi-functional liposomes having temperature-triggered release and magnetic resonance imaging for tumor-specific chemotherapy. Biomaterials 32:1387–1395

    Article  Google Scholar 

  124. Li X, Qian Y, Liu T, Hu X, Zhang G, You Y, Liu S (2011) Amphiphilic multiarm star block copolymer-based multifunctional unimolecular micelles for cancer targeted drug delivery and MR imaging. Biomaterials 32:6595–6605

    Article  Google Scholar 

  125. Ardana A, Whittaker AK, Thurecht KJ (2014) PEG-based hyperbranched polymer theranostics: optimizing chemistries for improved bioconjugation. Macromolecules 47:5211–5219

    Article  Google Scholar 

  126. Kim J, Lee JE, Lee SH, Yu JH, Lee JH, Park TG, Hyeon T (2008) Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer‐targeted imaging and magnetically guided drug delivery. Adv Mater 20:478–483

    Article  Google Scholar 

  127. Santhosh PB, Ulrih NP (2013) Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics. Cancer Lett 336:8–17

    Article  Google Scholar 

  128. Smejkalova D, Nešporová K, Huerta-Angeles G, Syrovátka J, Jirák D, Gálisová A, Velebny V (2014) Selective in vitro anticancer effect of superparamagnetic iron oxide nanoparticles loaded in hyaluronan polymeric micelles. Biomacromolecules 15:4012–4020

    Article  Google Scholar 

  129. Xie J, Jon S (2012) Magnetic nanoparticle-based theranostics. Theranostics 2:122–124

    Article  Google Scholar 

  130. Martin AL, Bernas LM, Rutt BK, Foster PJ, Gillies ER (2008) Enhanced cell uptake of superparamagnetic iron oxide nanoparticles functionalized with dendritic guanidines. Bioconjug Chem 19:2375–2384

    Article  Google Scholar 

  131. Lamanna G, Kueny-Stotz M, Mamlouk-Chaouachi H, Ghobril C, Basly B, Bertin A, Miladi I, Billotey C, Pourroy G, Begin-Colin S (2011) Dendronized iron oxide nanoparticles for multimodal imaging. Biomaterials 32:8562–8573

    Article  Google Scholar 

  132. Basly B, Felder‐Flesch D, Perriat P, Pourroy G, Bégin‐Colin S (2011) Properties and suspension stability of dendronized iron oxide nanoparticles for MRI applications. Contrast Media Mol Imaging 6:132–138

    Article  Google Scholar 

  133. Shen M, Shi X (2010) Dendrimer-based organic/inorganic hybrid nanoparticles in biomedical applications. Nanoscale 2:1596–1610

    Article  Google Scholar 

  134. Canilho N, Kasëmi E, Schlüter AD, Ruokolainen J, Mezzenga R (2007) Real space imaging and molecular packing of dendronized polymer-lipid supramolecular complexes. Macromolecules 40:7609–7616

    Article  Google Scholar 

  135. Abu-Reziq R, Alper H, Wang D, Post ML (2006) Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts. J Am Chem Soc 128:5279–5282

    Article  Google Scholar 

  136. Pan B-F, Gao F, Ao L-M (2005) Investigation of interactions between dendrimer-coated magnetite nanoparticles and bovine serum albumin. J Magn Magn Mater 293:252–258

    Article  Google Scholar 

  137. Zhu R, Jiang W, Pu Y, Luo K, Wu Y, He B, Gu Z (2011) Functionalization of magnetic nanoparticles with peptide dendrimers. J Mater Chem 21:5464–5474

    Article  Google Scholar 

  138. Walter A, Billotey C, Garofalo A, Ulhaq-Bouillet C, Lefèvre C, Taleb J, Laurent S, Vander Elst L, Muller RN, Lartigue L (2014) Mastering the shape and composition of dendronized iron oxide nanoparticles to tailor magnetic resonance imaging and hyperthermia. Chem Mater 26:5252–5264

    Article  Google Scholar 

  139. Jiang Y-H, Emau P, Cairns JS, Flanary L, Morton WR, McCarthy TD, Tsai C-C (2005) SPL7013 gel as a topical microbicide for prevention of vaginal transmission of SHIV89. 6P in macaques. AIDS Res Hum Retrovir 21:207–213

    Article  Google Scholar 

  140. McCarthy TD, Karellas P, Henderson SA, Giannis M, O’Keefe DF, Heery G, Paull JR, Matthews BR, Holan G (2005) Dendrimers as drugs: discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol Pharm 2:312–318

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, Y., Luo, K., Gu, Z. (2016). Functional Dendritic Polymer-Based Nanoscale Vehicles for Imaging-Guided Cancer Therapy. In: Dai, Z. (eds) Advances in Nanotheranostics I. Springer Series in Biomaterials Science and Engineering, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48544-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48544-6_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48542-2

  • Online ISBN: 978-3-662-48544-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics