Skip to main content

Sparse RNA Folding Revisited: Space-Efficient Minimum Free Energy Prediction

  • Conference paper
  • First Online:
Algorithms in Bioinformatics (WABI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9289))

Included in the following conference series:

  • 1108 Accesses

Abstract

RNA secondary structure prediction by energy minimization is the central computational tool for the analysis of structural non-coding RNAs and their interactions. Sparsification has been successfully applied to improve the time efficiency of various structure prediction algorithms while guaranteeing the same result; however, for many such folding problems, space efficiency is of even greater concern, in particular for long RNAs and complex folding algorithms. So far, space-efficient sparsified RNA folding with fold reconstruction was solved only for simple pseudo-energy models. Here, we revisit the problem of space-efficient free energy minimization. Whereas the space-efficient minimization of the free energy has been sketched before, the reconstruction of the optimum structure has not even been discussed. We show that this reconstruction is not possible in trivial extension of the method for simple energy models. Then, we present the time- and space-efficient sparsified free energy minimization algorithm SparseMFEFold, which guarantees optimal structure prediction. In particular, this novel algorithm provides efficient fold reconstruction based on dynamically garbage collected trace arrows. We provide theoretical and empirical results on the efficiency of the method. SparseMFEFold is free software, available at http://www.bioinf.uni-leipzig.de/~will/Software/SparseMFEFold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    i.e., we replace the recursion \(L^p(i,j)\) by Eq. \((\hat{L}^p)\) and replace the symbol \(L^p(i,j)\) by \({\hat{L}}^p(i,j)\) in the recursion L.

References

  1. Andronescu, M., Bereg, V., Hoos, H.H., Condon, A.: RNA STRAND: the RNA secondary structure and statistical analysis database. BMC Bioinform. 9(1), 340 (2008)

    Article  Google Scholar 

  2. Backofen, R., Tsur, D., Zakov, S., Ziv-Ukelson, M.: Sparse RNA folding: time and space efficient algorithms. J. Discrete Algorithms 9(1), 12–31 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dennis, C.: The brave new world of RNA. Nat. 418(6894), 122–124 (2002)

    Article  Google Scholar 

  4. Dimitrieva, S., Bucher, P.: Practicality and time complexity of a sparsified RNA folding algorithm. J. Bioinform. Comput. Biol. 10(2), 1241007 (2012)

    Article  Google Scholar 

  5. Hale, B.J., Yang, C.X., Ross, J.W.: Small RNA regulation of reproductive function. Mol. Reprod. Dev. 81(2), 148–159 (2014)

    Article  Google Scholar 

  6. Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, S., Tacker, M., Schuster, P.: Fast folding and comparison of RNA secondary structures. Monatshefte Chemie 125, 167–188 (1994)

    Article  Google Scholar 

  7. Jones, R., Lins, R.D.: Garbage Collection: Algorithms for Automatic Dynamic Memory Management. Wiley (1996)

    Google Scholar 

  8. Lorenz, R., Bernhart, S.H., Zu Siederdissen, C.H., Tafer, H., Flamm, C., Stadler, P.F., Hofacker, I.L.: ViennaRNA Package 2.0. Algorithms Mol. Biol. 6(1), 26 (2011)

    Article  Google Scholar 

  9. Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288(5), 911–940 (1999)

    Article  Google Scholar 

  10. Mattick, J.S., Makunin, I.V.: Non-coding RNA. Hum. Mol. Genet. 15(suppl 1), R17–R29 (2006)

    Article  Google Scholar 

  11. Möhl, M., Salari, R., Will, S., Backofen, R., Sahinalp, S.C.: Sparsification of RNA structure prediction including pseudoknots. Algorithms Mol. Biol. 5(1), 39 (2010)

    Article  Google Scholar 

  12. Nussinov, R., Jacobson, A.B.: Fast algorithm for predicting the secondary structure of single-stranded RNA. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 77, issue no. 11, pp. 6309–6313 (1980)

    Google Scholar 

  13. Rastegari, B., Condon, A.: Parsing nucleic acid pseudoknotted secondary structure: algorithm and applications. J. Comput. Biol. 14(1), 16–32 (2007)

    Article  MathSciNet  Google Scholar 

  14. Salari, R., Möhl, M., Will, S., Sahinalp, S.C., Backofen, R.: Time and space efficient RNA-RNA interaction prediction via sparse folding. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 473–490. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Sankoff, D.: Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J. Appl. Math. 45(5), 810–825 (1985). http://dx.doi.org/10.1137/0145048

    Article  MathSciNet  MATH  Google Scholar 

  16. Tinoco, I., Bustamante, C.: How RNA folds. J. Mol. Biol. 293(2), 271–281 (1999)

    Article  Google Scholar 

  17. Wexler, Y., Zilberstein, C., Ziv-Ukelson, M.: A study of accessible motifs and RNA folding complexity. J. Comput. Biol. J. Comput. Mol. Cell Biol. 14(6), 856–872 (2007)

    Article  MathSciNet  Google Scholar 

  18. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9(1), 133–148 (1981)

    Article  Google Scholar 

  19. Zuker, M., Sankoff, D.: RNA secondary structures and their prediction. Bull. Math. Biol. 46(4), 591–621 (1984). http://dx.doi.org/10.1007/bf02459506

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosna Jabbari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Will, S., Jabbari, H. (2015). Sparse RNA Folding Revisited: Space-Efficient Minimum Free Energy Prediction. In: Pop, M., Touzet, H. (eds) Algorithms in Bioinformatics. WABI 2015. Lecture Notes in Computer Science(), vol 9289. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48221-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48221-6_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48220-9

  • Online ISBN: 978-3-662-48221-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics