Skip to main content

Time and Space Efficient RNA-RNA Interaction Prediction via Sparse Folding

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2010)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6044))

Abstract

In the past years, a large set of new regulatory ncRNAs have been identified, but the number of experimentally verified targets is considerably low. Thus, computational target prediction methods are on high demand. Whereas all previous approaches for predicting a general joint structure have a complexity of O(n 6) running time and O(n 4) space, a more time and space efficient interaction prediction that is able to handle complex joint structures is necessary for genome-wide target prediction problems. In this paper we show how to reduce both the time and space complexity of the RNA-RNA interaction prediction problem as described by Alkan et al. [1] via dynamic programming sparsification - which allows to discard large portions of DP tables without loosing optimality. Applying sparsification techniques reduces the complexity of the original algorithm from O(n 6) time and O(n 4) space to O(n 4 ψ(n)) time and O(n 2 ψ(n) + n 3) space for some function ψ(n), which turns out to have small values for the range of n that we encounter in practice. Under the assumption that the polymer-zeta property holds for RNA-structures, we demonstrate that ψ(n) = O(n) on average, resulting in a linear time and space complexity improvement over the original algorithm. We evaluate our sparsified algorithm for RNA-RNA interaction prediction by total free energy minimization, based on the energy model of Chitsaz et al.[2], on a set of known interactions. Our results confirm the significant reduction of time and space requirements in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alkan, C., Karakoc, E., Nadeau, J.H., Sahinalp, S.C., Zhang, K.: RNA-RNA interaction prediction and antisense RNA target search. Journal of Computational Biology (Special RECOMB 2005 Issue) 13(2), 267–282 (2006)

    MathSciNet  Google Scholar 

  2. Chitsaz, H., Salari, R., Sahinalp, S.C., Backofen, R.: A partition function algorithm for interacting nucleic acid strands. Bioinformatics (Special ISMB/ECCB 2009 Issue) 25(12), i365–i373 (2009)

    Google Scholar 

  3. Storz, G.: An expanding universe of noncoding RNAs. Science 296(5571), 1260–1263 (2002)

    Article  Google Scholar 

  4. Bartel, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297 (2004)

    Article  Google Scholar 

  5. Hannon, G.J.: RNA interference. Nature 418(6894), 244–251 (2002)

    Article  Google Scholar 

  6. Zamore, P.D., Haley, B.: Ribo-gnome: the big world of small RNAs. Science 309(5740), 1519–1524 (2005)

    Article  Google Scholar 

  7. Wagner, E., Flardh, K.: Antisense RNAs everywhere?. Trends Genet. 18, 223–226 (2002)

    Article  Google Scholar 

  8. Brantl, S.: Antisense-RNA regulation and RNA interference. Bioch. Biophys. Acta 1575(1-3), 15–25 (2002)

    Google Scholar 

  9. Gottesman, S.: Micros for microbes: non-coding regulatory RNAs in bacteria. Trends in Genetics 21(7), 399–404 (2005)

    Article  Google Scholar 

  10. Seeman, N.: From genes to machines: DNA nanomechanical devices. Trends Biochem. Sci. 30, 119–125 (2005)

    Article  Google Scholar 

  11. Seeman, N.C., Lukeman, P.S.: Nucleic acid nanostructures: bottom-up control of geometry on the nanoscale. Reports on Progress in Physics 68, 237–270 (2005)

    Article  Google Scholar 

  12. Simmel, F., Dittmer, W.: DNA nanodevices. Small 1, 284–299 (2005)

    Article  Google Scholar 

  13. Venkataraman, S., Dirks, R., Rothemund, P., Winfree, E., Pierce, N.: An autonomous polymerization motor powered by DNA hybridization. Nat. Nanotechnol. 2, 490–494 (2007)

    Article  Google Scholar 

  14. Yin, P., Hariadi, R., Sahu, S., Choi, H., Park, S., Labean, T., Reif, J.: Programming DNA tube circumferences. Science 321, 824–826 (2008)

    Article  Google Scholar 

  15. Pervouchine, D.D.: IRIS: intermolecular RNA interaction search. Genome Inform. 15(2), 92–101 (2004)

    MathSciNet  Google Scholar 

  16. Huang, F.W., Qin, J., Reidys, C.M., Stadler, P.F.: Partition Function and Base Pairing Probabilities for RNA-RNA Interaction Prediction. Bioinformatics 25(20), 2646–2654 (2009)

    Google Scholar 

  17. David, L., Huber, W., Granovskaia, M., Toedling, J., Palm, C.J., Bofkin, L., Jones, T., Davis, R.W., Steinmetz, L.M.: A high-resolution map of transcription in the yeast genome. Proc. Natl. Acad. Sci. U.S.A. 103(14), 5320–5325 (2006)

    Article  Google Scholar 

  18. Wexler, Y., Zilberstein, C., Ziv-Ukelson, M.: A study of accessible motifs and RNA folding complexity. Journal of Computational Biology (Special RECOMB 2006 Issue) 14(6), 856–872 (2007)

    Google Scholar 

  19. Backofen, R., Tsur, D., Zakov, S., Ziv-Ukelson, M.: Sparse RNA folding: Time and space efficient algorithms. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 249–262. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Sankoff, D.: Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J. Appl. Math. 45(5), 810–825 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ziv-Ukelson, M., Gat-Viks, I., Wexler, Y., Shamir, R.: A faster algorithm for RNA co-folding. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 174–185. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Rehmsmeier, M., Steffen, P., Höchsmann, M., Giegerich, R.: Fast and effective prediction of microRNA/target duplexes. RNA 10(10), 1507–1517 (2004)

    Article  Google Scholar 

  23. Tjaden, B., Goodwin, S.S., Opdyke, J.A., Guillier, M., Fu, D.X., Gottesman, S., Storz, G.: Target prediction for small, noncoding RNAs in bacteria. Nucleic Acids Research 34(9), 2791–2802 (2006)

    Article  Google Scholar 

  24. Andronescu, M., Zhang, Z.C., Condon, A.: Secondary structure prediction of interacting RNA molecules. Journal of Molecular Biology 345(5), 987–1001 (2005)

    Article  Google Scholar 

  25. Bernhart, S.H., Tafer, H., Mückstein, U., Flamm, C., Stadler, P.F., Hofacker, I.L.: Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol. Biol. 1(1), 3 (2006)

    Article  Google Scholar 

  26. Dirks, R.M., Bois, J.S., Schaeffer, J.M., Winfree, E., Pierce, N.A.: Thermodynamic analysis of interacting nucleic acid strands. SIAM Review 49(1), 65–88 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zuker, M.: Prediction of RNA secondary structure by energy minimization. Methods in Molecular Biology 25, 267–294 (1994)

    Google Scholar 

  28. Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, S., Tacker, M., Schuster, P.: Fast folding and comparison of RNA secondary structures. Monatshefte Chemie 125, 167–188 (1994)

    Article  Google Scholar 

  29. Mückstein, U., Tafer, H., Hackermüller, J., Bernhart, S.H., Stadler, P.F., Hofacker, I.L.: Thermodynamics of RNA-RNA binding. Bioinformatics 22(10), 1177–1182 (2006)

    Article  Google Scholar 

  30. Busch, A., Richter, A.S., Backofen, R.: IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24(24), 2849–2856 (2008)

    Article  Google Scholar 

  31. Argaman, L., Altuvia, S.: fhla repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex. Journal of Molecular Biology 300(5), 1101–1112 (2000)

    Article  Google Scholar 

  32. Salari, R., Backofen, R., Sahinalp, S.C.: Fast prediction of RNA-RNA interaction. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 261–272. Springer, Heidelberg (2009); Also Algorithms for Molecular Biology (in press)

    Chapter  Google Scholar 

  33. Chitsaz, H., Backofen, R., Sahinalp, S.C.: biRNA: Fast RNA-RNA binding sites prediction. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 25–36. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  34. Nussinov, R., Pieczenik, G., Griggs, J.R., Kleitman, D.J.: Algorithms for loop matchings. SIAM Journal on Applied Mathematics 35(1), 68–82 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  35. Fisher, M.E.: Shape of a self-avoiding walk or polymer chain. Journal of Chemical Physics 44, 616–622 (1966)

    Article  MathSciNet  Google Scholar 

  36. Kafri, Y., Mukamel, D., Peliti, L.: Why is the DNA denaturation transition first order? Phys. Rev. Lett. 85, 4988–4991 (2000)

    Article  Google Scholar 

  37. Kato, Y., Akutsu, T., Seki, H.: A grammatical approach to rna-rna interaction prediction. Pattern Recogn. 42(4), 531–538 (2009)

    Article  MATH  Google Scholar 

  38. Wu, T., Wang, J., Liu, C., Zhang, Y., Shi, B., Zhu, X., Zhang, Z., Skogerb, G., Chen, L., Lu, H., Zhao, Y., Chen, R.: NPInter: the noncoding RNAs and protein related biomacromolecules interaction database. Nucleic Acids Res. 34, D150–D152 (2006)

    Google Scholar 

  39. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Wheeler, D.L.: GenBank. Nucleic Acids Research 36(Database issue), D25–D30 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salari, R., Möhl, M., Will, S., Sahinalp, S.C., Backofen, R. (2010). Time and Space Efficient RNA-RNA Interaction Prediction via Sparse Folding. In: Berger, B. (eds) Research in Computational Molecular Biology. RECOMB 2010. Lecture Notes in Computer Science(), vol 6044. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12683-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12683-3_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12682-6

  • Online ISBN: 978-3-642-12683-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics