Skip to main content

NO and ART

  • Chapter
  • First Online:
Artemisinin and Nitric Oxide

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 484 Accesses

Abstract

NO, mainly synthesized by NOS, is a signal transducer that conveys internal and external stimulations. The isoform of eNOS/nNOS is responsible for stable NO production, while the isoform of iNOS can be induced by proinflammatory cytokines for NO burst. Bacteria also synthesize NO by their own bNOS. ART exerts distinct roles in a dose-dependent manner. Low-dose ART induces and activates eNOS/nNOS, whereas high-dose ART inactivates all isoforms of NOS. ART can also mimic NO to upregulate COX for evoking mitochondrial uncoupling and biogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu Bakar N, Klonis N, Hanssen E, Chan C, Tilley L (2010) Digestive-vacuole genesis and endocytic processes in the early intraerythrocytic stages of Plasmodium falciparum. J Cell Sci 123:441–450

    Article  CAS  Google Scholar 

  • Acton N, Klayman DL (1985) Artemisitene: a new sesquiterpene lactone endoperoxide from Artemisia annua. Plant Med 5:441–442

    Article  Google Scholar 

  • Agapie T, Suseno S, Woodward JJ, Stoll S, Britt RD, Marletta MA (2009) Nitric oxide formation by a catalytically self-sufficient bacterial nitric oxide synthase from Sorangium cellulosum. Proc Natl Acad Sci USA 106:16221–16226

    Article  CAS  Google Scholar 

  • Balsa E, Marco R, Perales-Clemente E, Szklarczyk R, Calvo E, Landázuri MO, Enríquez JA (2012) NDUFA4 is a subunit of complex IV of the mammalian electron transport chain. Cell Metab 16:378–386

    Article  CAS  Google Scholar 

  • Bao F, Wu P, Xiao N, Qiu F, Zeng QP (2012) Nitric oxide-driven hypoxia initiates synovial angiogenesis, hyperplasia and inflammatory lesions in mice. PLoS ONE 7:e34494

    Google Scholar 

  • Beekman AC, Barentsen ARW, Woerdenbag HJ, van Uden W, Pras N, El-Feraly FS, Galal AM (1997) Stereochemistry-dependent cytotoxicity of some artemisinin derivatives. J Nat Prod 60:325–327

    Article  CAS  Google Scholar 

  • Beekman AC, Wierenga P, Woerdenbag HJ, van Uden W, Pras N, Konings A, El-Feraly FS, Galal AM, Wikstrom HV (1998) TI: artemisinin-derived sesquiterpene lactones as potential antitumour compounds: cytotoxic action against bone marrow and tumour cells. Plant Med 64:615–619

    Article  CAS  Google Scholar 

  • Bousejra-El GF, Claparols C, Benoit-Vical F, Meunier B, Robert A (2008) The antimalarial trioxaquine DU1301 alkylates heme in malaria-infected mice. Antimicrob Agents Chemother 52:2966–2969

    Article  Google Scholar 

  • Boveris A, Carreras MC, Poderoso JJ (2010) The regulation of cell energetics and mitochondrial signaling by nitric oxide. In: Ignarro LJ (ed) Nitric oxide: biology and pathobiology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Brooks PS, Kraus DW, Shiva S, Doeller JE, Barone MC, Patel RP, Lancaster JRJ, Darley-Usmar V (2003) Control of mitochondrial respiration by nitric oxide, effects of low oxygen and respiratory state. J Biol Chem 278:31603–31609

    Article  Google Scholar 

  • Brown GC, Cooper CE (1994) Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 356:295-298

    Google Scholar 

  • Buddi R, Lin B, Atilano SR, Zorapapel NC, Kenney MC, Brown DJ (2002) Evidence of oxidative stress in human corneal diseases. J Histochem Cytochem 50:341–351

    Article  CAS  Google Scholar 

  • Cabello CM, Lamore SD, Bair WB 3rd, Qiao S, Azimian S, Lesson JL, Wondrak GT (2011) The redox antimalarial dihydroartemisinin targets human metastatic melanoma cells but not primary melanocytes with induction of NOXA-dependent apoptosis. Invest New Drugs 30:1289–1301

    Article  Google Scholar 

  • Castello PR, David PS, McClure T, Crook Z, Payton RO (2006) Mitochondrial cytochrome c oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metabol 3:277–287

    Article  CAS  Google Scholar 

  • Cazelles J, Robert A, Meunier B (2001) Alkylation of heme by artemisinin, an antimalarial drug. Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule C-Chimie 4:85–89

    CAS  Google Scholar 

  • Chen ZT, Huang ZY, Wu LY, Zeng QP (2000) Artemisinin-mediated apoptosis in hepatoma cells. Chin J Integr Trad West Med Liver Dis 10:23–25

    Google Scholar 

  • Chen Z, Foster MW, Zhang J, Mao L, Rockman HA, Kawamoto T, Kitagawa K, Nakayama K, Hess DT, Stamler JS (2005) An essential role for mitochondrial aldehyde dehydrogenase in nitroglycerin bioactivation. Proc Natl Acad Sci USA 102:12159–12164

    Article  CAS  Google Scholar 

  • Cleeter MW, Cooper JM, Darley-Usmar VM, Moncada S, Schapira AH (1994) Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, bynitric oxide. Implications for neurodegenerative diseases. FEBS Lett 345:50-54

    Google Scholar 

  • Corker H, Poole RK (2003) Nitric oxide formation by Escherichia coli: dependence on nitrite reductase, the nitric oxide-sensing regulator Fnr, and flavohemoglobin Hmp. J Biol Chem 278:31584–31592

    Article  CAS  Google Scholar 

  • Corpas FJ, Barroso JB, Del Rio LA (2004) Enzymatic sources of nitric oxide in plant cells—beyond one protein–one function. New Phytol 162:246–247

    Article  CAS  Google Scholar 

  • Creek DJ, Charman WN, Chiu FCK, Prankerd RJ, Dong Y, Vennerstrom JL, Charman SA (2008) Relationship between antimalarial activity and heme alkylation. Antimicrob Agents Chemother 52:1291–1296

    Article  CAS  Google Scholar 

  • de Luca C, Olefsky JM (2008) Inflammation and insulin resistance. FEBS Lett 582:97–105

    Article  Google Scholar 

  • del Pilar Crespo M, Avery TD, Hanssen E, Fox E, Robindon TV, Valente P, Taylor DK, Tilley L (2008) Artemisinin and a series of novel endoperoxide antimalarials exert early effects on digestive vacuole morphology. Antimicrob Agents Chemother 52:98–109

    Article  Google Scholar 

  • Elfering SL, Sarkela TM, Giulivi C (2002) Biochemistry of mitochondrial nitric-oxide synthase. J Biol Chem 277:38079–38086

    Article  CAS  Google Scholar 

  • Feng LL, Yang RY, Yang XQ, Zeng XM, Lu WJ, Zeng QP (2009) Synergistic re-channeling of mevalonate pathway for artemisinin overproduction in transgenic Artemisia annua. Plant Sci 177:57–67

    Article  CAS  Google Scholar 

  • Finocchietto P, Barreyro F, Holod S, Peralta J, Franco MC, Mendez C, Converso DP, Estevez A, Carreras MC, Poderoso JJ (2008) Control of muscle mitochondria by insulin entails activation of Akt2-mtNOS pathway: Implications for the metabolic syndrome. PLoS ONE 3:e1749

    Article  Google Scholar 

  • Ginsburg H, Atamna H (1994) The redox status of malaria-infected erythrocytes: an overview with an emphasis on unresolved problems. Parasite 1:5–13

    Article  CAS  Google Scholar 

  • Green SJ, Mellouk S, Hoffman SL, Meltzer MS, Nacy CA (1990) Cellular mechanisms of nonspecific immunity to intracellular infection: cytokine-induced synthesis of toxic nitrogen oxides from L-arginine by macrophages and hepatocytes. Immunol Lett 25:15–19

    Article  CAS  Google Scholar 

  • Green SJ, Scheller LF, Marletta MA, Seguin MC, Klotz FW, Slayter M, Nelson BJ, Nacy CA (1994) Nitric oxide: cytokine-regulation of nitric oxide in host resistance to intracellular pathogens. Immunol Lett 43:87–94

    Article  CAS  Google Scholar 

  • Guo XX, Yang XQ, Yang RY, Zeng QP (2010) Salicylic acid and methyl jasmonate but not Rose Bengal up-regulate artemisinin biosynthetic genes through invoking burst of endogenous singlet oxygen. Plant Sci 178:390–397

    Article  CAS  Google Scholar 

  • Gusarov I, Starodubtseva M, Wang ZQ, McQuade L, Lippard SJ, Stuehr DJ, Nudler E (2008) Bacterial nitric-oxide synthases operate without a dedicated redox partner. J Biol Chem 283:13140–13147

    Article  CAS  Google Scholar 

  • He J, Gao Q, Liao T, Zeng QP (2015) An ecological implication of glandular trichome-sequestered artemisinin: as a sink of biotic/abiotic stress-triggered singlet oxygen. Peer J PrePrints 3:e1026

    Article  Google Scholar 

  • Hobbs AJ, Stasch J-P (2010) Soluble GC: allosteric activation and redox regulation. In: Ignarro LJ (ed) NO: biology and pathobiology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Hou J, Wang D, Zhang R, Wang H (2008) Experimental therapy of hepatoma with artemisinin and its derivatives: in vitro and in vivo activity, chemosensitization, and mechanisms of action. Clin Cancer Res 14:5519–5530

    Article  CAS  Google Scholar 

  • Jung M (1997) Synthesis and cytotoxicity of novel artemisinin analogs. Bioorg Med Chem Lett 7:1091–1094

    Article  CAS  Google Scholar 

  • Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298:249–258

    CAS  Google Scholar 

  • Krudsood S, Looareesuwan S, Tangpukdee N, Wilairatana P, Phumratanaprapin W, Leowattana W, Chalermrut K, Ramanathan S, Navaranam V, Olliaro P, Vaillant M, Kiechel JR, Taylor WRJ (2010) New fixed-dose artemisinin-mefloquine formulation against multidrug-resistant Plasmodium falciparum in adults: a comparative phase IIb safety and pharmacokinetic study with standard-dose nonfixed artemisinin plus mefloquine. Antimicrob Agents Chemother 54:3730–3737

    Article  CAS  Google Scholar 

  • Lawson DM, Stevenson CE, Andrew CR, Eady RR (2000) Unprecedented proximal binding of NO to heme: implications for GC. EMBO J 19:5661–5671

    Article  CAS  Google Scholar 

  • Li Y (2007) Discovery and development of new antimalarial drug Qinghaosu (artemisinin). Shanghai Scientific & Technical Publishers, Shanghai

    Google Scholar 

  • Li W, Mo W, Shen D, Sun L, Wang J, Lu S, Gitschier JM, Zhou B (2005) Yeast model uncovers dual roles of mitochondria in the action of artemisinin. PLoS Genet 1:e36

    Article  Google Scholar 

  • Lin L, Park S, Lakatta EG (2009) RAGE signaling in inflammation and arterial aging. Front Biosci 14:1403–1413

    Article  CAS  Google Scholar 

  • Liu Q, Gross SS (1996) Binding sites of nitric oxide synthases. Meth Enzymol 268:311–324

    CAS  Google Scholar 

  • Liu JM, Ni MY, Fan JF, Tu YY, Wu ZH, Wu YL, Chou WS (1979) Structure and reaction of arteannuin. Acta Chim Sin 37:129–143

    CAS  Google Scholar 

  • Mason MG, Nicholls P, Wilson MT, Cooper CE (2006) Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase. Proc Natl Acad Sci USA 103:708–713

    Article  CAS  Google Scholar 

  • Meshnick SR, Thomas A, Ran A, Xy CM, Pan HZ (1991) Artemisinin (qinghaosu): the role of intracellular hemin in its mechanism of antimalarial action. Mol Biochem Parasitol 49:181–189

    Article  CAS  Google Scholar 

  • Meshnick SR, Yang YZ, Lima V, Kuypers F, Kamchonwongpaisan S, Yuthavong Y (1993) Iron-dependent free radical generation from the antimalarial agent artemisinin (qinghaosu). Antimicrob Agents Chemother 37:1108–1114

    Article  CAS  Google Scholar 

  • Meshnick SR, Little B, Yang YZ (1994) Alkylation of proteins by artemisinin. Biochem Pharm 48:569–573

    Google Scholar 

  • Mohiuddin I, Chai H, Lin PH, Lumsden AB, Yao Q, Chen C (2006) Nitrotyrosine and chlorotyrosine: clinical significance and biological functions in the vascular system. J Surg Res 133:143–149

    Article  CAS  Google Scholar 

  • O’Neill PM, Barton VE, Ward SA (2010) The molecular mechanism of action of artemisinin—the debate continues. Molecules 15:1705–1721

    Article  Google Scholar 

  • Pacher P, Obrosova IG, Mabley JG, Szabó C (2005) Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Curr Med Chem 12:267–275

    Article  CAS  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315

    Article  CAS  Google Scholar 

  • Pandey AV, Tekwani BL, Singh RL, Chauhan VS (1999) Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite. J Biol Chem 274:19383–19388

    Article  CAS  Google Scholar 

  • Price R, van Vugt M, Phaipun L, Luxemburger C, Simpson J, McGready R, ter Kuile F, Kham A, Chongsuphajaisiddhi T, White NJ, Nosten F (1999) Adverse effects in patients with acute falciparum malaria treated with artemisinin derivatives. Am J Trop Med Hyg 60:547–555

    CAS  Google Scholar 

  • Rhoades RA, Tanner GA (2003) Medical physiology, 2nd edn. Lippincott, Williams & Wilkins, Ambler

    Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  CAS  Google Scholar 

  • Robert A, Benoit-Vical FO, Claparols C, Meunier B (2005) The antimalarial drug artemisinin alkylates heme in infected mice. Proc Natl Acad Sci USA 102:13676–13680

    Article  CAS  Google Scholar 

  • Romero MR, Efferth T, Serrano MA, Castano B, Macias RI, Briz O, Marin JJ (2005) Effect of artemisinin/artesunate as inhibitors of hepatitis B virus production in an in vitro replicative system. Antiviral Res 68:75–83

    Article  CAS  Google Scholar 

  • Roszer T (2012) The biology of subcellular nitric oxide. Springer, Dordrecht

    Book  Google Scholar 

  • Roth RJ, Acton NA (1989) The isolation of Sesquiterpenes from Artemisia annua. J Chem Educ 66:349

    Article  CAS  Google Scholar 

  • Tay YM, Lim KS, Sheu FS, Jenner A, Whiteman M, Wong KP, Halliwell B (2004) Do mitochondria make nitric oxide? no? Free Radic Res 38:591–599

    Article  CAS  Google Scholar 

  • Taylor WR, White NJ (2004) Antimalarial drug toxicity: a review. Drug Saf 27:25–61

    Article  CAS  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1995) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science 269:1069–1074

    Article  CAS  Google Scholar 

  • van Faassen E, Vanin A (2004) Nitric oxide. In: Encyclopedia for analytical science, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • van Faassen E, Vanin A (2007) Radicals for life: the various forms of nitric oxide. Elsevier, Amsterdam

    Google Scholar 

  • van Herpen TW, Cankar K, Nogueira M, Bosch D, Bouwmeester HJ, Beekwilder J (2010) Nicotiana benthamiana as a production platform for artemisinin precursors. PLoS ONE 5:e14222

    Article  Google Scholar 

  • van Wonderen JH, Burlat B, Richardson DJ, Cheesman MR, Butt JN (2008) The nitric oxide reductase activity of cytochrome c nitrite reductase from Escherichia coli. J Biol Chem 283:9587–9594

    Article  Google Scholar 

  • Wang H, Yan B, Luo D (1998) Study on anti-arrhythmia activity of artemisinin. Chin Pharmacol Bull 14:94

    CAS  Google Scholar 

  • Wang J, Huang L, Li J, Fan Q, Long Y, Li Y, Zhou B (2010) Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLoS One: e9582

    Google Scholar 

  • Webb DJ, Freestone S, Allen MJ, Muirhead GJ (1999) Sildenafil citrate and blood-pressure-lowering drugs: results of drug interaction studies with an organic nitrate and a calcium antagonist. Am J Cardiol 83:21C–28C

    Article  CAS  Google Scholar 

  • Webb AJ, Patel N, Loukogeorgakis S, Okorie M, Aboud Z, Misra S, Rashid R, Miall P, Deanfield J, Benjamin N, MacAllister R, Hobbs AJ, Ahluwalia A (2008) Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension 51:784–790

    Article  CAS  Google Scholar 

  • Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115:1111–1119

    Article  CAS  Google Scholar 

  • WHO (2001) Antimalarial drug combination therapy. Report of a WHO technical consultation. WHO/CDS/RBM/2001/35, reiterated in 2003

    Google Scholar 

  • WHO (2003) International pharmacopoeia, 3rd edn, vol 5, Geneva

    Google Scholar 

  • WHO (2005) WHO model list of essential medicines, 14th edn. Revised Mar 2005, Geneva

    Google Scholar 

  • Woerdenbag HJ, Pras N, Nguyen GC, Bui TB, Bos R, Van Uden W, Pham VY, Nguyen VB, Batterman S, Lugt CB (1994) Artemisinin, related sesquiterpenes, and essential oil in Artemisia annua during a vegetation period in Vietnam. Plant Med 60:272–275

    Article  CAS  Google Scholar 

  • Wolin MS, Wood KS, Ignarro LJ (1982) Gualylate cyclase from bovine lung. A kinetic analysis of the regulation of the purified soluble enzyme by protoporphyrin IX, heme, and nitrosyl-heme. J Biol Chem 257:13312–13320

    CAS  Google Scholar 

  • Wu P, Bao F, Zheng Q, Xiao N, Wang DT, Zeng QP (2012) Artemisinin and rapamycin compromise nitric oxide-driven and hypoxia-triggered acute articular synovitis in mice. Sci Sin Vitae 42:724-738

    Google Scholar 

  • Xiao SH (2005) Development of antischistosomal drugs in China, with particular consideration to praziquantel and the artemisinins. Acta Trop 96:153–167

    Article  CAS  Google Scholar 

  • Yang RY, Feng LL, Yang XQ, Yin LL, Xu XL, Zeng QP (2008) Quantitative transcript profiling reveals downregulation of a sterol pathway relevant gene and overexpression of artemisinin biogenetic genes in transgenic Artemisia annua plants. Planta Med 74:1510–1516

    Article  CAS  Google Scholar 

  • Yang RY, Zeng XM, Lu YY, Lu WJ, Feng LL, Yang XQ, Zeng QP (2010) Senescent leaves of Artemisia annua are the most active organs for over-expression of artemisinin biosynthesis responsible genes upon burst of singlet oxygen. Planta Med 76:734–742

    Article  CAS  Google Scholar 

  • Zeng QP, Qiu F, Yuan L (2008a) Production of artemisinin by genetically modified microbes. Biotechnol Lett 30:581–592

    Article  CAS  Google Scholar 

  • Zeng QP, Zhao C, Yin LL, Yang RY, Zeng XM, Huang Y, Feng LL, Yang XQ (2008b) Cloning of artemisinin biosynthetic cDNAs and novel ESTs and quantification of low temperature-induced gene overexpression. Sci China Ser C 51:232–244

    Article  CAS  Google Scholar 

  • Zeng QP, Zeng XM, Feng LL, Yin LL, Yang XQ, Yang RY (2009) Quantification of three key enzymes involved in artemisinin biosynthesis in Artemisia annua by polyclonal antisera-based ELISA. Plant Mol Biol Rep 27:50–57

    Article  CAS  Google Scholar 

  • Zeng QP, Zeng XM, Yang RY, Yang XQ (2011) Singlet oxygen as a candidate retrograde signaling transducer for modulating artemisinin biosynthetic genes in Artemisia annua. Biol Plant 55:669–674

    Article  CAS  Google Scholar 

  • Zeng QP, Zeng LX, Lu WJ, Feng LL, Yang RY, Qiu F (2012) Enhanced artemisinin production from engineered yeast precursors upon biotransformation. Biocat Biotrans 30:190–202

    Article  CAS  Google Scholar 

  • Zhang JF (2007) Late report: record of Project 523 and the research and development of Qinghaosu. Yangcheng Evening News Publisher

    Google Scholar 

  • Zheng GQ (1994) Cytotoxic terpenoids and flavonoids from Artemisia annua. Plant Med 60:54–57

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Ping Zeng .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Zeng, QP. (2015). NO and ART. In: Artemisinin and Nitric Oxide. SpringerBriefs in Molecular Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47688-8_2

Download citation

Publish with us

Policies and ethics