Skip to main content

Emerging Applications of Environmentally Friendly Zeolites in the Selective Catalytic Reduction of Nitrogen Oxides

  • Chapter
Zeolites in Sustainable Chemistry

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 3096 Accesses

Abstract

The catalytic removal of nitrogen oxides (NO x ) from diesel exhaust under oxygen-rich conditions remains a major challenge in the field of environmental catalysis, and the selective catalytic reduction of NO x with NH3 (NH3-SCR), especially over zeolite catalysts, is a well-proven technique for the catalytic deNO x process for diesel vehicles. The comprehensive understanding of the structure-activity relationship of zeolite catalysts in the NH3-SCR reaction and the elucidation of the detailed reaction mechanism are very important for the practical use of these catalytic materials. In this chapter, using the environmentally friendly Fe- and Cu-based zeolite catalysts (i.e. Fe-ZSM-5, Cu-ZSM-5, Cu-SSZ-13 and Cu-SAPO-34, etc.) as examples, the influence of preparation methods on NH3-SCR performance, the role of metal active sites/surface acid sites, the impact of NO2 and co-existing pollutants, the hydrothermal stability and also the possible SCR reaction pathways over these materials are discussed in detail, which can provide theoretical and empirical guidance for the redesign and activity improvement of these catalysts in their practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Granger P, Parvulescu VI (2011) Catalytic NO x abatement systems for mobile sources: from three-way to lean burn after-treatment technologies. Chem Rev 111:3155–3207

    Article  CAS  Google Scholar 

  2. Liu Z, Woo SI (2006) Recent advances in catalytic deNO x science and technology. Catal Rev 48:43–89

    Article  CAS  Google Scholar 

  3. Kwak JH, Tran D, Burton SD, Szanyi J, Lee JH, Peden CHF (2012) Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites. J Catal 287:203–209

    Article  CAS  Google Scholar 

  4. Grossale A, Nova I, Tronconi E (2008) Study of a Fe-zeolite-based system as NH3-SCR catalyst for diesel exhaust after treatment. Catal Today 136:18–27

    Article  CAS  Google Scholar 

  5. Gabrielsson PLT (2004) Urea-SCR in automotive applications. Top Catal 28:177–184

    Article  CAS  Google Scholar 

  6. Johnson TV (2009) Diesel emission control in review. SAE Int J Fuels Lubr 2:1–12

    Article  CAS  Google Scholar 

  7. Brandenberger S, Kröcher O, Tissler A, Althoff R (2008) The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts. Catal Rev 50:492–531

    Article  CAS  Google Scholar 

  8. Feng X, Hall WK (1997) FeZSM-5: a durable SCR catalyst for NO x removal from combustion streams. J Catal 166:368–376

    Article  CAS  Google Scholar 

  9. Ma A-Z, Grünert W (1999) Selective catalytic reduction of NO by ammonia over Fe-ZSM-5 catalysts. Chem Commun 1:71–72

    Article  Google Scholar 

  10. Long RQ, Yang RT (1999) Superior Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia. J Am Chem Soc 121:5595–5596

    Article  CAS  Google Scholar 

  11. Sjövall H, Olsson L, Fridell E, Blint RJ (2006) Selective catalytic reduction of NO x with NH3 over Cu-ZSM-5-the effect of changing the gas composition. Appl Catal B 64:180–188

    Article  CAS  Google Scholar 

  12. Sjövall H, Blint RJ, Olsson L (2009) Detailed kinetic modeling of NH3 SCR over Cu-ZSM-5. Appl Catal B 92:138–153

    Article  CAS  Google Scholar 

  13. Wilken N, Wijayanti K, Kamasamudram K, Currier NW, Vedaiyan R, Yezerets A, Olsson L (2012) Mechanistic investigation of hydrothermal aging of Cu-Beta for ammonia SCR. Appl Catal B 111–112:58–66

    Google Scholar 

  14. Park J, Park H, Baik J, Nam I, Shin C, Lee J, Cho B, Oh S (2006) Hydrothermal stability of CuZSM5 catalyst in reducing NO by NH3 for the urea selective catalytic reduction process. J Catal 240:47–57

    Article  CAS  Google Scholar 

  15. Kwak JH, Tonkyn RG, Kim DH, Szanyi J, Peden CHF (2010) Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NO x with NH3. J Catal 275:187–190

    Article  CAS  Google Scholar 

  16. Moliner M, Franch C, Palomares E, Grill M, Corma A (2012) Cu-SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NO x . Chem Commun 48:8264–8266

    Article  CAS  Google Scholar 

  17. Sultana A, Nanba T, Sasaki M, Haneda M, Suzuki K, Hamada H (2011) Selective catalytic reduction of NO x with NH3 over different copper exchanged zeolites in the presence of decane. Catal Today 164:495–499

    Article  CAS  Google Scholar 

  18. Ye Q, Wang L, Yang RT (2012) Activity, propene poisoning resistance and hydrothermal stability of copper exchanged chabazite-like zeolite catalysts for SCR of NO with ammonia in comparison to Cu/ZSM-5. Appl Catal A 427–428:24–34

    Article  CAS  Google Scholar 

  19. Zones SI (1991) Conversion of faujasites to high-silica chabazite SSZ-13 in the presence of N, N, N-trimethyl-1-adamantammonium iodide. J Chem Soc Faraday Trans 87:3709–3716

    Article  CAS  Google Scholar 

  20. Long RQ, Yang RT (1999) Catalytic performance of Fe-ZSM-5 catalysts for selective catalytic reduction of nitric oxide by ammonia. J Catal 188:332–339

    Article  CAS  Google Scholar 

  21. Rahkamaa-Tolonen K, Maunula T, Lomma M, Huuhtanen M, Keiski RL (2005) The effect of NO2 on the activity of fresh and aged zeolite catalysts in the NH3-SCR reaction. Catal Today 100:217–222

    Article  CAS  Google Scholar 

  22. Iwasaki M, Yamazaki K, Shinjoh H (2011) NO x reduction performance of fresh and aged Fe-zeolites prepared by CVD: effects of zeolite structure and Si/Al2 ratio. Appl Catal B 102:302–309

    Article  CAS  Google Scholar 

  23. Long RQ, Yang RT (2001) Fe-ZSM-5 for selective catalytic reduction of NO with NH3: a comparative study of different preparation techniques. Catal Lett 74:201–205

    Article  CAS  Google Scholar 

  24. Long RQ, Yang RT (2002) Reaction mechanism of selective catalytic reduction of NO with NH3 over Fe-ZSM-5 catalyst. J Catal 207:224–231

    Article  CAS  Google Scholar 

  25. Rivallan M, Berlier G, Ricchiardi G, Zecchina A, Nechita M-T, Olsbye U (2008) Characterisation and catalytic activity in deNO x reactions of Fe-ZSM-5 zeolites prepared via ferric oxalate precursor. Appl Catal B 84:204–213

    Article  CAS  Google Scholar 

  26. Brandenberger S, Kröcher O, Casapu M, Tissler A, Althoff R (2011) Hydrothermal deactivation of Fe-ZSM-5 catalysts for the selective catalytic reduction of NO with NH3. Appl Catal B 101:649–659

    Article  CAS  Google Scholar 

  27. Chen H-Y, Sachtler WMH (1998) Activity and durability of Fe/ZSM-5 catalysts for lean burn NO x reduction in the presence of water vapor. Catal Today 42:73–83

    Article  CAS  Google Scholar 

  28. Krishna K, Seijger GBF, van den Bleek CM, Makkee M, Mul G, Calis HPA (2003) Selective catalytic reduction of NO with NH3 over Fe-ZSM-5 catalysts prepared by sublimation of FeCl3 at different temperatures. Catal Lett 86:121–132

    Article  CAS  Google Scholar 

  29. Qi G, Gatt JE, Yang RT (2004) Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe-exchanged zeolites prepared by sublimation of FeCl3. J Catal 226:120–128

    Article  CAS  Google Scholar 

  30. Kumar MS, Schwidder M, Grünert W, Brückner A (2004) On the nature of different iron sites and their catalytic role in Fe-ZSM-5 deNO x catalysts: new insights by a combined EPR and UV/Vis spectroscopic approach. J Catal 227:384–397

    Article  CAS  Google Scholar 

  31. Battiston AA, Bitter JH, de Groot FMF, Overweg AR, Stephan O, van Bokhoven JA, Kooyman PJ, van der Spek C, Vankó G, Koningsberger DC (2003) Evolution of Fe species during the synthesis of over-exchanged Fe/ZSM5 obtained by chemical vapor deposition of FeCl3. J Catal 213:251–271

    Article  CAS  Google Scholar 

  32. Marturano P, Drozdova L, Pirngruber GD, Kogelbauer A, Prins R (2001) The mechanism of formation of the Fe species in Fe-ZSM-5 prepared by CVD. Phys Chem Chem Phys 3:5585–5595

    Article  CAS  Google Scholar 

  33. Rauscher M, Kesore K, MoÈnnig R, Schwieger W, Tiûler A, Turek T (1999) Preparation of a highly active Fe-ZSM-5 catalyst through solid-state ion exchange for the catalytic decomposition of N2O. Appl Catal A 184:249–256

    Article  CAS  Google Scholar 

  34. Devadas M, Kröcher O, Elsener M, Wokaun A, Mitrikas G, Söger N, Pfeifer M, Demel Y, Mussmann L (2007) Characterization and catalytic investigation of Fe-ZSM5 for urea-SCR. Catal Today 119:137–144

    Article  CAS  Google Scholar 

  35. Qi G, Yang RT (2005) Ultra-active Fe/ZSM-5 catalyst for selective catalytic reduction of nitric oxide with ammonia. Appl Catal B 60:13–22

    Article  CAS  Google Scholar 

  36. Qi G, Yang RT (2005) Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe/ZSM-5 catalysts. Appl Catal A 287:25–33

    Article  CAS  Google Scholar 

  37. Delahay G, Valade D, Guzmanvargas A, Coq B (2005) Selective catalytic reduction of nitric oxide with ammonia on Fe-ZSM-5 catalysts prepared by different methods. Appl Catal B 55:149–155

    Article  CAS  Google Scholar 

  38. Iwasaki M, Yamazaki K, Banno K, Shinjoh H (2008) Characterization of Fe/ZSM-5 deNO x catalysts prepared by different methods: relationships between active Fe sites and NH3-SCR performance. J Catal 260:205–216

    Article  CAS  Google Scholar 

  39. Shi X, Liu F, Shan W, He H (2012) Hydrothermal deactivation of Fe-ZSM-5 prepared by different methods for the selective catalytic reduction of NO x with NH3. Chin J Catal 33:454–464

    Article  CAS  Google Scholar 

  40. Schwidder M, Heikens S, Detoni A, Geisler S, Berndt M, Bruckner A, Grunert W (2008) The role of NO2 in the selective catalytic reduction of nitrogen oxides over Fe-ZSM-5 catalysts: active sites for the conversion of NO and of NO/NO2 mixtures. J Catal 259:96–103

    Article  CAS  Google Scholar 

  41. Schwidder M, Kumar M, Klementiev K, Pohl M, Bruckner A, Grunert W (2005) Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content I. Relations between active site structure and catalytic performance. J Catal 231:314–330

    Article  CAS  Google Scholar 

  42. Brandenberger S, Kröcher O, Tissler A, Althoff R (2010) The determination of the activities of different iron species in Fe-ZSM-5 for SCR of NO by NH3. Appl Catal B 95:348–357

    Article  CAS  Google Scholar 

  43. Høj M, Beier MJ, Grunwaldt J-D, Dahl S (2009) The role of monomeric iron during the selective catalytic reduction of NO x by NH3 over Fe-BEA zeolite catalysts. Appl Catal B 93:166–176

    Article  CAS  Google Scholar 

  44. Schwidder M, Santhosh Kumar M, Bruckner A, Grunert W (2005) Active sites for NO reduction over Fe-ZSM-5 catalysts. Chem Commun 6:805–807

    Article  CAS  Google Scholar 

  45. Brandenberger S, Kröcher O, Tissler A, Althoff R (2011) Effect of structural and preparation parameters on the activity and hydrothermal stability of metal-exchanged ZSM-5 in the selective catalytic reduction of NO by NH3. Ind Eng Chem Res 50:4308–4319

    Article  CAS  Google Scholar 

  46. Schwidder M, Santhosh Kumar M, Bentrup U, Pérez-Ramírez J, Brückner A, Grünert W (2008) The role of Brønsted acidity in the SCR of NO over Fe-MFI catalysts. Microporous Mesoporous Mater 111:124–133

    Article  CAS  Google Scholar 

  47. Qi G, Wang Y, Yang RT (2008) Selective catalytic reduction of nitric oxide with ammonia over ZSM-5 based catalysts for diesel engine applications. Catal Lett 121:111–117

    Article  CAS  Google Scholar 

  48. Li M, Yeom Y, Weitz E, Sachtler WMH (2006) An acid catalyzed step in the catalytic reduction of NO x to N2. Catal Lett 112:129–132

    Article  CAS  Google Scholar 

  49. Savara A, Li M-J, Sachtler WMH, Weitz E (2008) Catalytic reduction of NH4NO3 by NO: effects of solid acids and implications for low temperature deNO x processes. Appl Catal B 81:251–257

    Article  CAS  Google Scholar 

  50. Brandenberger S, Kröcher O, Wokaun A, Tissler A, Althoff R (2009) The role of Brønsted acidity in the selective catalytic reduction of NO with ammonia over Fe-ZSM-5. J Catal 268:297–306

    Article  CAS  Google Scholar 

  51. Klukowski D, Balle P, Geiger B, Wagloehner S, Kureti S, Kimmerle B, Baiker A, Grunwaldt JD (2009) On the mechanism of the SCR reaction on Fe/HBEA zeolite. Appl Catal B 93:185–193

    Article  CAS  Google Scholar 

  52. Kröcher O, Devadas M, Elsener M, Wokaun A, Söger N, Pfeifer M, Demel Y, Mussmann L (2006) Investigation of the selective catalytic reduction of NO by NH3 on Fe-ZSM5 monolith catalysts. Appl Catal B 66:208–216

    Article  CAS  Google Scholar 

  53. He C, Wang Y, Cheng Y, Lambert CK, Yang RT (2009) Activity, stability and hydrocarbon deactivation of Fe/Beta catalyst for SCR of NO with ammonia. Appl Catal A 368:121–126

    Article  CAS  Google Scholar 

  54. Ma L, Li J, Arandiyan H, Shi W, Liu C, Fu L (2012) Influence of calcination temperature on Fe/HBEA catalyst for the selective catalytic reduction of NO x with NH3. Catal Today 184:145–152

    Article  CAS  Google Scholar 

  55. Pieterse JAZ, Pirngruber GD, van Bokhoven JA, Booneveld S (2007) Hydrothermal stability of Fe-ZSM-5 and Fe-BEA prepared by wet ion-exchange for N2O decomposition. Appl Catal B 71:16–22

    Article  CAS  Google Scholar 

  56. Lee H-T, Rhee H-K (1999) Stability of Fe/ZSM-5 de-NO x catalyst: effects of iron loading and remaining Brønsted acid sites. Catal Lett 61:71–76

    Article  CAS  Google Scholar 

  57. Iwasaki M, Shinjoh H (2011) Hydrothermal stability enhancement by sequential ion-exchange of rare earth metals on Fe/BEA zeolites used as NO reduction catalysts. Chem Commun 47:3966–3968

    Article  CAS  Google Scholar 

  58. Long R, Yang RT (2000) Characterization of Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia. J Catal 194:80–90

    Article  CAS  Google Scholar 

  59. Carja G, Delahay G, Signorile C, Coq B (2004) Fe-Ce-ZSM-5 a new catalyst of outstanding properties in the selective catalytic reduction of NO with NH3. Chem Commun 12:1404–1405

    Article  CAS  Google Scholar 

  60. Heo I, Lee Y, Nam I-S, Choung JW, Lee J-H, Kim H-J (2011) Effect of hydrocarbon slip on NO removal activity of CuZSM5, FeZSM5 and V2O5/TiO2 catalysts by NH3. Microporous Mesoporous Mater 141:8–15

    Article  CAS  Google Scholar 

  61. Li J, Zhu R, Cheng Y, Lambert CK, Yang RT (2010) Mechanism of propene poisoning on Fe-ZSM-5 for selective catalytic reduction of NO x with ammonia. Environ Sci Technol 44:1799–1805

    Article  CAS  Google Scholar 

  62. Ma L, Li J, Cheng Y, Lambert CK, Fu L (2012) Propene poisoning on three typical Fe-zeolites for SCR of NO x with NH3: from mechanism study to coating modified architecture. Environ Sci Technol 46:1747–1754

    Article  CAS  Google Scholar 

  63. Malpartida I, Marie O, Bazin P, Daturi M, Jeandel X (2011) An operando IR study of the unburnt HC effect on the activity of a commercial automotive catalyst for NH3-SCR. Appl Catal B 102:190–200

    Article  CAS  Google Scholar 

  64. Kern P, Klimczak M, Heinzelmann T, Lucas M, Claus P (2010) High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts. Part II: Fe-zeolite catalysts. Appl Catal B 95:48–56

    Article  CAS  Google Scholar 

  65. Silver RG, Stefanick MO, Todd BI (2008) A study of chemical aging effects on HDD Fe-zeolite SCR catalyst. Catal Today 136:28–33

    Article  CAS  Google Scholar 

  66. Shwan S, Jansson J, Olsson L, Skoglundh M (2014) Chemical deactivation of Fe-BEA as NH3-SCR catalyst-effect of phosphorous. Appl Catal B 147:111–123

    Article  CAS  Google Scholar 

  67. Ren L, Zhu L, Yang C, Chen Y, Sun Q, Zhang H, Li C, Nawaz F, Meng X, Xiao FS (2011) Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NO x by NH3. Chem Commun 47:9789–9791

    Article  CAS  Google Scholar 

  68. Qi G, Yang RT (2005) Low-temperature SCR of NO with NH3 over noble metal promoted Fe-ZSM-5 catalysts. Catal Lett 100:243–246

    Article  CAS  Google Scholar 

  69. Kim YJ, Kwon HJ, Heo I, Nam I-S, Cho BK, Choung JW, Cha M-S, Yeo GK (2012) Mn-Fe/ZSM5 as a low-temperature SCR catalyst to remove NO x from diesel engine exhaust. Appl Catal B 126:9–21

    Article  CAS  Google Scholar 

  70. Sultana A, Sasaki M, Suzuki K, Hamada H (2013) Tuning the NO x conversion of Cu-Fe/ZSM-5 catalyst in NH3-SCR. Catal Commun 41:21–25

    Article  CAS  Google Scholar 

  71. Koebel M, Elsener M, Kleemann M (2000) Urea-SCR: a promising technique to reduce NO x emissions from automotive diesel engines. Catal Today 59:335–345

    Article  CAS  Google Scholar 

  72. Devadas M, Krocher O, Elsener M, Wokaun A, Soger N, Pfeifer M, Demel Y, Mussmann L (2006) Influence of NO2 on the selective catalytic reduction of NO with ammonia over Fe-ZSM5. Appl Catal B 67:187–196

    Article  CAS  Google Scholar 

  73. Sun Q, Gao Z-X, Chen H-Y, Sachtler WMH (2001) Reduction of NO x with ammonia over Fe/MFI: reaction mechanism based on isotopic labeling. J Catal 201:88–99

    Google Scholar 

  74. Iwasaki M, Shinjoh H (2010) A comparative study of “standard”, “fast” and “NO2” SCR reactions over Fe/zeolite catalyst. Appl Catal A 390:71–77

    Article  CAS  Google Scholar 

  75. Grossale A, Nova I, Tronconi E, Chatterjee D, Weibel M (2008) The chemistry of the NO/NO2-NH3 “fast” SCR reaction over Fe-ZSM5 investigated by transient reaction analysis. J Catal 256:312–322

    Article  CAS  Google Scholar 

  76. Grossale A, Nova I, Tronconi E, Chatterjee D, Weibel M (2009) NH3-NO/NO2 SCR for diesel exhausts after treatment: reactivity, mechanism and kinetic modelling of commercial Fe- and Cu-promoted zeolite catalysts. Top Catal 52:1837–1841

    Article  CAS  Google Scholar 

  77. Grossale A, Nova I, Tronconi E (2009) Ammonia blocking of the “Fast SCR” reactivity over a commercial Fe-zeolite catalyst for diesel exhaust after treatment. J Catal 265:141–147

    Article  CAS  Google Scholar 

  78. Forzatti P, Nova I, Tronconi E (2009) Enhanced NH3 selective catalytic reduction for NO x abatement. Angew Chem Int Ed 48:8366–8368

    Article  CAS  Google Scholar 

  79. Shi X, Liu F, Xie L, Shan W, He H (2013) NH3-SCR performance of fresh and hydrothermally aged Fe-ZSM-5 in standard and fast selective catalytic reduction reactions. Environ Sci Technol 47:3293–3298

    CAS  Google Scholar 

  80. PaÃrvulescua VI, Grange P, Delmon B (1998) Catalytic removal of NO. Catal Today 46:233–316

    Article  Google Scholar 

  81. Baik JH, Yim SD, Nam I-S, Mok YS, Lee J-H, Cho BK, Oh SH (2004) Control of NO x emissions from diesel engine by selective catalytic reduction (SCR) with urea. Top Catal 30–31:37–41

    Article  Google Scholar 

  82. Komatsu T, Nunokawa M, Moon IS, Takahara T, Namba S, Yashima T (1994) Kinetic studies of reduction of nitric oxide with ammonia on Cu2+-exchanged zeolites. J Catal 148:427–437

    Article  CAS  Google Scholar 

  83. Sultana A, Nanba T, Haneda M, Hamada H (2009) SCR of NO x with NH3 over Cu/NaZSM-5 and Cu/HZSM-5 in the presence of decane. Catal Commun 10:1859–1863

    Article  CAS  Google Scholar 

  84. Richter M, Eckelt R, Parlitz B, Fricke R (1998) Low-temperature conversion of NO, to N2 by zeolite-fixed ammonium ions. Appl Catal B 15:129–146

    Article  CAS  Google Scholar 

  85. Moden B, Donohue JM, Cormier WE, Li H-X (2008) Effect of Cu-loading and structure on the activity of Cu-exchanged zeolites for NH3-SCR. In: Stud Surf Sci Catal, edn. Elsevier, Paris: France, pp 1219–1222

    Google Scholar 

  86. Blakeman PG, Burkholder EM, Chen H-Y, Collier JE, Fedeyko JM, Jobson H, Rajaram RR (2014) The role of pore size on the thermal stability of zeolite supported Cu SCR catalysts. Catal Today 231:56–63

    Article  CAS  Google Scholar 

  87. Fickel DW, D’Addio E, Lauterbach JA, Lobo RF (2011) The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Appl Catal B 102:441–448

    Article  CAS  Google Scholar 

  88. Luo J-Y, Oh H, Henry C, Epling W (2012) Effect of C3H6 on selective catalytic reduction of NO x by NH3 over a Cu/zeolite catalyst: a mechanistic study. Appl Catal B 123–124:296–305

    Article  CAS  Google Scholar 

  89. Aoki K, Kusakabe K, Morooka S (2000) Separation of gases with an A-Type zeolite membrane. Ind Eng Chem Res 39:2245–2251

    Article  CAS  Google Scholar 

  90. Gao F, Walter ED, Karp EM, Luo J, Tonkyn RG, Kwak JH, Szanyi J, Peden CHF (2013) Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies. J Catal 300:20–29

    Article  CAS  Google Scholar 

  91. Schmieg SJ, Oh SH, Kim CH, Brown DB, Lee JH, Peden CHF, Kim DH (2012) Thermal durability of Cu-CHA NH3-SCR catalysts for diesel NO x reduction. Catal Today 184:252–261

    Article  CAS  Google Scholar 

  92. Ma L, Cheng Y, Cavataio G, McCabe RW, Fu L, Li J (2013) Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NO x in diesel exhaust. Chem Eng J 225:323–330

    Article  CAS  Google Scholar 

  93. Bordiga S, Regli L, Cocina D, Lamberti C, Bjørgen M, Lillerud KP (2005) Assessing the acidity of high silica chabazite H-SSZ-13 by FTIR using CO as molecular probe comparison with H-SAPO-34. J Phys Chem C 109:2779–2784

    Article  CAS  Google Scholar 

  94. Wang J, Yu T, Wang X, Qi G, Xue J, Shen M, Li W (2012) The influence of silicon on the catalytic properties of Cu/SAPO-34 for NO x reduction by ammonia-SCR. Appl Catal B 127:137–147

    Article  CAS  Google Scholar 

  95. Yu T, Wang J, Shen M, Li W (2013) NH3-SCR over Cu/SAPO-34 catalysts with various acid contents and low Cu loading. Catal Sci Technol 3:3234–3241

    Article  CAS  Google Scholar 

  96. Wang L, Gaudet JR, Li W, Weng D (2013) Migration of Cu species in Cu/SAPO-34 during hydrothermal aging. J Catal 306:68–77

    Article  CAS  Google Scholar 

  97. Fan S, Xue J, Yu T, Fan D, Hao T, Shen M, Li W (2013) The effect of synthesis methods on Cu species and active sites over Cu/SAPO-34 for NH3-SCR reaction. Catal Sci Technol 3:2357–2364

    Article  CAS  Google Scholar 

  98. Deka U, Lezcano-Gonzalez I, Warrender SJ, Lorena Picone A, Wright PA, Weckhuysen BM, Beale AM (2013) Changing active sites in Cu-CHA catalysts: deNO x selectivity as a function of the preparation method. Microporous Mesoporous Mater 166:144–152

    Article  CAS  Google Scholar 

  99. Wang L, Li W, Qi G, Weng D (2012) Location and nature of Cu species in Cu/SAPO-34 for selective catalytic reduction of NO with NH3. J Catal 289:21–29

    Article  CAS  Google Scholar 

  100. Gao F, Walter ED, Washton NM, Szanyi J, Peden CHF (2013) Synthesis and evaluation of Cu-SAPO-34 catalysts for ammonia selective catalytic reduction. 1. Aqueous solution ion exchange. ACS Catal 3:2083–2093

    Article  CAS  Google Scholar 

  101. Dĕdeček J, Wichterlová B, Kubát P (1999) Siting of the Cu+ ions in dehydrated ion exchanged synthetic and natural chabasites: a Cu+ photoluminescence study. Microporous Mesoporous Mater 32:63–74

    Article  Google Scholar 

  102. Zamadies M, Chen X, Kevan L (1992) Study of Cu(II) location and adsorbate interaction in CuH-SAPO-34 molecular sieve by electron Sp4 resoname and electron spin echo modulath spectroscopies. J Phys Chem 96:2652–2657

    Article  Google Scholar 

  103. Fickel DW, Lobo RF (2010) Copper coordination in Cu-SSZ-13 and Cu-SSZ-16 investigated by Variable-Temperature XRD. J Phys Chem C 114:1633–1640

    Article  CAS  Google Scholar 

  104. Korhonen ST, Fickel DW, Lobo RF, Weckhuysen BM, Beale AM (2011) Isolated Cu2+ ions: active sites for selective catalytic reduction of NO. Chem Commun 47:800–802

    Article  CAS  Google Scholar 

  105. Deka U, Juhin A, Eilertsen EA, Emerich H, Green MA, Korhonen ST, Weckhuysen BM, Beale AM (2012) Confirmation of isolated Cu2+ ions in SSZ-13 Zeolite as active sites in NH3-selective catalytic reduction. J Phys Chem C 116:4809–4818

    Google Scholar 

  106. Kispersky VF, Kropf AJ, Ribeiro FH, Miller JT (2012) Low absorption vitreous carbon reactors for operando XAS: a case study on Cu/Zeolites for selective catalytic reduction of NO x by NH3. Phys Chem Chem Phys 14:2229–2238

    Article  CAS  Google Scholar 

  107. McEwen JS, Anggara T, Schneider WF, Kispersky VF, Miller JT, Delgass WN, Ribeiro FH (2012) Integrated operando X-ray absorption and DFT characterization of Cu-SSZ-13 exchange sites during the selective catalytic reduction of NO x with NH3. Catal Today 184:129–144

    Article  CAS  Google Scholar 

  108. Kwak JH, Zhu H, Lee JH, Peden CH, Szanyi J (2012) Two different cationic positions in Cu-SSZ-13? Chem Commun 48:4758–4760

    Article  CAS  Google Scholar 

  109. Xue J, Wang X, Qi G, Wang J, Shen M, Li W (2013) Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NO x with ammonia: relationships between active Cu sites and de-NO x performance at low temperature. J Catal 297:56–64

    Article  CAS  Google Scholar 

  110. Aguayo AT, Gayubo AG, Vivanco R, Olazar M, Bilbao J (2005) Role of acidity and microporous structure in alternative catalysts for the transformation of methanol into olefins. Appl Catal A 283:197–207

    Article  CAS  Google Scholar 

  111. Colombo M, Nova I, Tronconi E (2012) Detailed kinetic modeling of the NH3-NO/NO2 SCR reactions over a commercial Cu-zeolite catalyst for Diesel exhausts after treatment. Catal Today 197:243–255

    Article  CAS  Google Scholar 

  112. Kwak JH, Tran D, Szanyi J, Peden CHF, Lee JH (2012) The Effect of copper loading on the selective catalytic reduction of Nitric Oxide by ammonia over Cu-SSZ-13. Catal Lett 142:295–301

    Article  CAS  Google Scholar 

  113. Zhu H, Kwak JH, Peden CHF, Szanyi J (2013) In situ DRIFTS-MS studies on the oxidation of adsorbed NH3 by NO x over a Cu-SSZ-13 zeolite. Catal Today 205:16–23

    Article  CAS  Google Scholar 

  114. Kwak JH, Lee JH, Burton SD, Lipton AS, Peden CH, Szanyi J (2013) A common intermediate for N2 formation in enzymes and zeolites: side-on Cu-nitrosyl complexes. Angew Chem Int Ed 52:9985–9989

    Article  CAS  Google Scholar 

  115. Metkar PS, Balakotaiah V, Harold MP (2012) Experimental and kinetic modeling study of NO oxidation: comparison of Fe and Cu-zeolite catalysts. Catal Today 184:115–128

    Article  CAS  Google Scholar 

  116. Wang D, Zhang L, Kamasamudram K, Epling WS (2013) In Situ-DRIFTS study of selective catalytic reduction of NO x by NH3 over Cu-exchanged SAPO-34. ACS Catal 3:871–881

    Article  CAS  Google Scholar 

  117. Trukhan N, Mueller U, Bull I (2011) US Patent 2011/0076229, 31 Mar 2011

    Google Scholar 

  118. Xie L, Liu F, Ren L, Shi X, Xiao FS, He H (2014) Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NO with NH3. Environ Sci Technol 48:566–572

    Article  CAS  Google Scholar 

  119. Xie L, Liu F, Xiao FS, He H. Effects of post-treatment method and Na co-cation on the hydrothermal stability of Cu-SSZ-13 catalyst for the selective catalytic reduction of NO x with NH3. To be published

    Google Scholar 

  120. Xie L, Liu F, Shi X, He H (2013) Influence of calcination procedure on NH3-SCR performance of Cu-SSZ-13 catalysts prepared by one-pot synthesis method. Paper presented at the 6th Asia-Pacific Congress on Catalysis, Taipei, Taiwan, 13–17 October, 2013

    Google Scholar 

  121. Xie L (2014) Selective catalytic reduction of NO x with NH3 over highly efficient Cu-SSZ-13 catalyst. PhD thesis in the University of Chinese Academy of Sciences

    Google Scholar 

  122. Verma AA, Anggara T, Bates SA, Parekh AA, Paolucci C, Schneider WF, Yezerets A, Kamasamudram K, Miller JT, Delgass WN, Ribeiro FH (2013) NO oxidation: a probe reaction on Cu-SSZ13. Paper presented at the 23rd North American catalysis society meeting, Galt House Hotel, Kentucky, Louisville, 2–7 June 2013

    Google Scholar 

  123. Xie L, Liu F, Liu K, Shi X, He H (2014) Inhibitory effect of NO2 on the selective catalytic reduction of NO x with NH3 over one-pot-synthesized Cu-SSZ-13 catalyst. Catal Sci Technol 4:1104–1110

    Article  CAS  Google Scholar 

  124. Ciardelli C, Nova I, Tronconi E, Chatterjee D, Bandl-Konrad B (2004) A “Nitrate Route” for the low temperature “Fast SCR” reaction over a V2O5–WO3/TiO2 commercial catalyst. Chem Commun 23:2718–2719

    Article  CAS  Google Scholar 

  125. Martínez-Franco R, Moliner M, Thogersen JR, Corma A (2013) Efficient One-Pot preparation of Cu-SSZ-13 materials using cooperative OSDAs for their catalytic application in the SCR of NO x . ChemCatChem 5:3316–3323

    Article  CAS  Google Scholar 

  126. Martínez-Franco R, Moliner M, Franch C, Kustov A, Corma A (2012) Rational direct synthesis methodology of very active and hydrothermally stable Cu-SAPO-34 molecular sieves for the SCR of NO x . Appl Catal B 127:273–280

    Article  CAS  Google Scholar 

  127. Lorena PA, Warrender SJ, Slawin AMZ, Dawson DM, Ashbrook SE, Wright PA, Thompson SP, Gaberova L, Llewellyn PL, Moulin B, Vimont A, Daturi M, Park MB, Sung SK, Nam I-S, Hong SB (2011) A co-templating route to the synthesis of Cu SAPO STA-7, giving an active catalyst for the selective catalytic reduction of NO. Microporous Mesoporous Mater 146:36–47

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, F., Xie, L., Shi, X., He, H. (2016). Emerging Applications of Environmentally Friendly Zeolites in the Selective Catalytic Reduction of Nitrogen Oxides. In: Xiao, FS., Meng, X. (eds) Zeolites in Sustainable Chemistry. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47395-5_12

Download citation

Publish with us

Policies and ethics