Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 346 Accesses

Abstract

Previously, we had confirmed that synthetic hexasaccharide was indeed the RM2 antigen. We then conjugated the synthetic RM2 antigen to the carrier protein CRM197 to form the vaccine candidate for vaccination in mice. Glycan arrays were used to monitor the titers of the induced antibody and specificity. We further evaluated the efficacy of the vaccines by CDC assay using the prostate cancer cell line LNCap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Francis T, Tillett WS (1930) Cutaneous reactions in pneumonia. The development of antibodies following the intradermal injection of type-specific polysaccharide. J Exp Med 52(4):573–585

    Article  CAS  Google Scholar 

  2. Macleod CM et al (1945) Prevention of pneumococcal pneumonia by immunization with specific capsular polysaccharides. J Exp Med 82(6):445–465

    Article  Google Scholar 

  3. Guo Z, Boons G-J (2009) Carbohydrate-based vaccines and immunotherapies. Wiley series in drug discovery and development, vol xviii. Wiley, Hoboken, p 408

    Google Scholar 

  4. Stevanovic S (2002) Identification of tumour-associated T-CELL epitopes for vaccine development. Nat Rev Cancer 2(7):514–520

    Article  CAS  Google Scholar 

  5. Hakomori S, Zhang YM (1997) Glycosphingolipid antigens and cancer therapy. Chem Biol 4(2):97–104

    Article  CAS  Google Scholar 

  6. Freire T et al (2006) Carbohydrate antigens: synthesis aspects and immunological applications in cancer. Mini Rev Med Chem 6(12):1357–1373

    Article  CAS  Google Scholar 

  7. Dube DH, Bertozzi CR (2005) Glycans in cancer and inflammation. Potential for therapeutics and diagnostics. Nat Rev Drug Discov 4(6):477–488

    Article  CAS  Google Scholar 

  8. Ragupathi G et al (1997) Immunization of mice with a fully synthetic globo H antigen results in antibodies against human cancer cells: a combined chemical-immunological approach to the fashioning of an anticancer vaccine. Angew Chem-Int Ed Engl 36(1–2):125–128

    Article  CAS  Google Scholar 

  9. Park TK et al (1996) Total synthesis and proof of structure of a human breast tumor (globo-H) antigen. J Am Chem Soc 118(46):11488–11500

    Article  CAS  Google Scholar 

  10. Slovin SF et al (1999) Carbohydrate vaccines in cancer: immunogenicity of a fully synthetic globo H hexasaccharide conjugate in man. Proc Natl Acad Sci USA 96(10):5710–5715

    Article  CAS  Google Scholar 

  11. Gilewski T et al (2001) Immunization of metastatic breast cancer patients with a fully synthetic globo H conjugate: a phase I trial. Proc Natl Acad Sci USA 98(6):3270–3275

    Article  CAS  Google Scholar 

  12. Nagorny P et al (2009) On the emerging role of chemistry in the fashioning of biologics: synthesis of a bidomainal fucosyl GM1-based vaccine for the treatment of small cell lung cancer. J Org Chem 74(15):5157–5162

    Article  CAS  Google Scholar 

  13. Dickler MN et al (1999) Immunogenicity of a fucosyl-GM1-keyhole limpet hemocyanin conjugate vaccine in patients with small cell lung cancer. Clin Cancer Res 5(10):2773–2779

    CAS  Google Scholar 

  14. Sabbatini PJ et al (2000) Immunization of ovarian cancer patients with a synthetic Lewis(Y)-protein conjugate vaccine: a phase 1 trial. Int J Cancer 87(1):79–85

    Article  CAS  Google Scholar 

  15. Huang YL, Wu CY (2010) Carbohydrate-based vaccines: challenges and opportunities. Expert Rev Vaccines 9(11):1257–1274

    Article  CAS  Google Scholar 

  16. Huang YL et al (2013) Carbohydrate-based vaccines with a glycolipid adjuvant for breast cancer. Proc Natl Acad Sci USA 110(7):2517–2522

    Article  CAS  Google Scholar 

  17. Dickler MN et al (1999) Immunogenicity of a fucosyl-GM1-keyhole limpet hemocyanin conjugate vaccine in patients with small cell lung cancer. Clin Cancer Res 5(10):2773–2779

    CAS  Google Scholar 

  18. Helling F et al (1994) GD3 vaccines for melanoma: superior immunogenicity of keyhole limpet hemocyanin conjugate vaccines. Cancer Res 54(1):197–203

    CAS  Google Scholar 

  19. Chapman PB et al (2004) Sequential immunization of melanoma patients with GD3 ganglioside vaccine and anti-idiotypic monoclonal antibody that mimics GD3 ganglioside. Clin Cancer Res 10(14):4717–4723

    Article  CAS  Google Scholar 

  20. Helling F et al (1995) GM2-KLH conjugate vaccine: increased immunogenicity in melanoma patients after administration with immunological adjuvant QS-21. Cancer Res 55(13):2783–2788

    CAS  Google Scholar 

  21. Livingston PO et al (1994) Phase 1 trial of immunological adjuvant QS-21 with a GM2 ganglioside-keyhole limpet haemocyanin conjugate vaccine in patients with malignant melanoma. Vaccine 12(14):1275–1280

    Article  CAS  Google Scholar 

  22. Zhang H et al (1998) Antibodies against GD2 ganglioside can eradicate syngeneic cancer micrometastases. Cancer Res 58(13):2844–2849

    CAS  Google Scholar 

  23. Guthmann MD et al (2004) Active specific immunotherapy of melanoma with a GM3 ganglioside-based vaccine: a report on safety and immunogenicity. J Immunother 27(6):442–451

    Article  CAS  Google Scholar 

  24. Sabbatini PJ et al (2000) Immunization of ovarian cancer patients with a synthetic Lewis(y)-protein conjugate vaccine: a phase 1 trial. Int J Cancer 87(1):79–85

    Article  CAS  Google Scholar 

  25. Longenecker BM et al (1993) Immune responses of mice and human breast cancer patients following immunization with synthetic sialyl-Tn conjugated to KLH plus detox adjuvant. Ann N Y Acad Sci 690:276–291

    Article  CAS  Google Scholar 

  26. MacLean GD et al (1993) Immunization of breast cancer patients using a synthetic sialyl-Tn glycoconjugate plus Detox adjuvant. Cancer Immunol Immunother 36(4):215–222

    Article  CAS  Google Scholar 

  27. Krug LM et al (2004) Vaccination of small cell lung cancer patients with polysialic acid or N-propionylated polysialic acid conjugated to keyhole limpet hemocyanin. Clin Cancer Res 10(3):916–923

    Article  CAS  Google Scholar 

  28. Slovin SF et al (2003) Fully synthetic carbohydrate-based vaccines in biochemically relapsed prostate cancer: clinical trial results with alpha-N-acetylgalactosamine-O-serine/threonine conjugate vaccine. J Clin Oncol 21(23):4292–4298

    Article  CAS  Google Scholar 

  29. Gilewski TA et al (2007) Immunization of high-risk breast cancer patients with clustered sTn-KLH conjugate plus the immunologic adjuvant QS-21. Clin Cancer Res 13(10):2977–2985

    Article  CAS  Google Scholar 

  30. Ragupathi G et al (2002) Comparison of antibody titers after immunization with monovalent or tetravalent KLH conjugate vaccines. Vaccine 20(7–8):1030–1038

    Article  CAS  Google Scholar 

  31. Slovin SF et al (2007) A polyvalent vaccine for high-risk prostate patients: “are more antigens better?”. Cancer Immunol Immunother 56(12):1921–1930

    Article  CAS  Google Scholar 

  32. Keding SJ, Danishefsky SJ (2004) Prospects for total synthesis: a vision for a totally synthetic vaccine targeting epithelial tumors. Proc Natl Acad Sci USA 101(33):11937–11942

    Article  CAS  Google Scholar 

  33. Ragupathi G et al (2006) Preparation and evaluation of unimolecular pentavalent and hexavalent antigenic constructs targeting prostate and breast cancer: a synthetic route to anticancer vaccine candidates. J Am Chem Soc 128(8):2715–2725

    Article  CAS  Google Scholar 

  34. Zhu J et al (2009) From synthesis to biologics: preclinical data on a chemistry derived anticancer vaccine. J Am Chem Soc 131(26):9298–9303

    Article  CAS  Google Scholar 

  35. Lee D, Danishefsky SJ (2009) “Biologic” level structures through chemistry: a total synthesis of a unimolecular pentavalent MUCI glycopeptide construct. Tetrahedron Lett 50(19):2167–2170

    Article  CAS  Google Scholar 

  36. Kaiser A et al (2010) Fully synthetic vaccines consisting of tumor-associated MUC1 glycopeptides and a lipopeptide ligand of the Toll-like receptor 2. Angew Chem Int Ed Engl 49(21):3688–3692

    Article  CAS  Google Scholar 

  37. Cremer GA et al (2006) Synthesis and biological evaluation of a multiantigenic Tn/TF-containing glycopeptide mimic of the tumor-related MUC1 glycoprotein. Chem Med Chem 1(9):965–968

    Article  CAS  Google Scholar 

  38. Natori T et al (1994) Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge Agelas mauritianus. Tetrahedron 50(9):2771–2784

    Article  CAS  Google Scholar 

  39. Wu D et al (2005) Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. Proc Natl Acad Sci USA 102(5):1351–1356

    Article  CAS  Google Scholar 

  40. Wu TN et al (2011) Avidity of CD1d-ligand-receptor ternary complex contributes to T-helper 1 (Th1) polarization and anticancer efficacy. Proc Natl Acad Sci USA 108(42):17275–17280

    Article  CAS  Google Scholar 

  41. Ley SV, Priepke HWM (1994) Cyclohexane-1,2-diacetals in synthesis. 2. A facile one-pot synthesis of a trisaccharide unit from the common polysaccharide antigen of group-B streptococci using cyclohexane-1,2-diacetal (Cda) protected rhamnosides. Angew Chem-Int Ed Engl 33(22):2292–2294

    Google Scholar 

  42. Chuang HY et al (2013) Synthesis and vaccine evaluation of the tumor-associated carbohydrate antigen RM2 from prostate cancer. J Am Chem Soc 135(30):11140–11150

    Article  CAS  Google Scholar 

  43. Miyaji EN et al (2001) Induction of neutralizing antibodies against diphtheria toxin by priming with recombinant Mycobacterium bovis BCG expressing CRM(197), a mutant diphtheria toxin. Infect Immun 69(2):869–874

    Article  CAS  Google Scholar 

  44. Godefroy S et al (2005) Effect of skin barrier disruption on immune responses to topically applied cross-reacting material, CRM197 of diphtheria toxin. Infect Immun 73(8):4803–4809

    Article  CAS  Google Scholar 

  45. Stickings P et al (2008) Transcutaneous immunization with cross-reacting material CRM197 of diphtheria toxin boosts functional antibody levels in mice primed parenterally with adsorbed diphtheria toxoid vaccine? Infect Immun 76(4):1766–1773

    Article  CAS  Google Scholar 

  46. Cooper NR (1985) The classical complement pathway—activation and regulation of the 1st complement component. Adv Immunol 37:151–216

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Yang Chuang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chuang, HY. (2015). RM2 Antigen: Synthesis of Glycoconjugates. In: Synthesis and Vaccine Evaluation of the Tumor Associated Carbohydrate Antigen RM2 from Prostate Cancer. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46848-7_3

Download citation

Publish with us

Policies and ethics