Skip to main content

Upper Ionosphere of Mars During Solar Quiet and Disturbed Conditions

  • Chapter
  • First Online:
Planetary Exploration and Science: Recent Results and Advances

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

  • 1251 Accesses

Abstract

In this chapter, we have described upper and lower ionospheric measurements, which have been obtained from radio occultation experiment onboard Mariners 6, 7 and 9; Mars 4 and 5; Viking 1 and 2; Mars Global Surveyor; and Mars Express. The ionisation sources like solar EUV, X-ray and particle radiations have been discussed. Observations on the upper ionosphere of Mars during disturbances like aurorae, solar flares, solar energetic particles and coronal mass ejections are also described. The understanding of complex behaviour of Martian ionosphere requires a balanced effort in the area of theoretical modelling. Therefore, we have also reported modelling of the upper ionosphere of Mars during quiet and disturbed conditions. At present measurements on the ionosphere of Mars are limited to middle- and high-latitude region. The low-latitude ionosphere of Mars is not observed. The physics of the low-latitude ionosphere could be very different from middle- and high-latitude ionosphere. Therefore, it is necessary to look for opportunities for obtaining observations at low-latitude region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acuña MH et al (1998) Magnetic field and plasma observations at Mars: initial results of the Mars Global Surveyor Mission. Science 279:1676–1680

    Article  Google Scholar 

  • Barth CA (1985) Photochemistry of the atmosphere of Mars. In: Levine JS (ed) The photochemistry of the atmospheres. Academic, New York, pp 337–392

    Chapter  Google Scholar 

  • Bertaux J-L, Leblanc F, Witasse O, Quemerais E, Lilensten J, Stern SA, Sandel B, Korablev O (2005) Discovery of an aurora on Mars. Nature 435:790–794

    Article  Google Scholar 

  • Bougher SW, Roble RG, Ridley EC, Dickinson RE (1990) The Mars thermosphere II. General circulation with coupled dynamical and composition. J Geophys Res 95:14811–14827

    Article  Google Scholar 

  • Brain DA (2006) Mars Global Surveyor measurements of the Martian solar wind interaction. Space Sci Rev 126:77–112

    Article  Google Scholar 

  • Brain D et al (2010) A comparison of global models for the solar wind interaction with Mars. Icarus 206:149–151

    Google Scholar 

  • Brecht SH, Ledvina SA (2006) The solar wind interaction with the Martian ionosphere/atmosphere. Space Sci Rev 126:15–38

    Article  Google Scholar 

  • Cane HV, McGuire RE, von Rosenvinge TT (1986) Two classes of solar energetic particle events associated with impulsive and long-duration soft X-ray flares. Astrophys J 301:448–459

    Article  Google Scholar 

  • Chen RH, Cravens TE, Nagy AF (1978) The Martian ionosphere in light of the Viking observations. J Geophys Res 83:3871–3876

    Article  Google Scholar 

  • Dandouras I, Reme H, Cao JB, Escoubet P, Brandt PC (2007) Abstract on magnetosphere response to the 2005 and 2006 extreme solar events as observed by the cluster and double star spacecraft: solar extreme events. In: Symposium held at Athens in September

    Google Scholar 

  • Duru F, Gurnett DA, Morgan DD, Modolo R, Nagy AF, Najib D (2008) Electron densities in the upper ionosphere of Mars from the excitation of electron plasma oscillations. J Geophys Res 113:A07302

    Google Scholar 

  • Fang X, Liemohn MW, Nagy AF, Luhmann J, Ma Y (2010) On the effect of the Martian crustal magnetic field on atmospheric erosion. Icarus 206:130–138

    Article  Google Scholar 

  • Fillingim MO, Peticolas LM, Lillis RJ, Brain DA, Halekas JS, Lummerzheim D, Bougher SW (2010) Localized ionization patches in the nighttime ionosphere of Mars and their electrodynamic consequences. Icarus 206:112–119

    Article  Google Scholar 

  • Fjeldbo G, Kliore A, Seidel B (1970) The Martian 1969 occultation measurements of the upper atmosphere of Mars. Radio Sci 5:381–386

    Article  Google Scholar 

  • Fjeldbo G, Sweetnam D, Brenkle J, Christensen E, Farless D, Mehta J, Seidel B, Michael W Jr, Wallio A, Grossi M (1977) Viking radio occultation measurements of Martian atmosphere and topography: primary mission covering age. J Geophys Res 82:4317–4324

    Article  Google Scholar 

  • Fox JL (1992) Airglow and Aurora in the atmosphere of Venus and Mars. In: Luhmann JG, Tatrallyay M, Pepin RO (eds) Venus and Mars: atmosphere, ionosphere, and solar wind interactions, vol 66, Geophysical monograph series. AGU, Washington, DC, pp 191–222

    Google Scholar 

  • Fox JL (2009) Morphology of the dayside ionosphere of Mars: implications for ion outflows. J Geophys Res 114:E12005. doi:10.1029/2009JE003432

    Article  Google Scholar 

  • Fox JL, Dalgarno A (1979) Ionization, luminosity, and heating of the upper atmosphere of Mars. J Geophys Res 84:7315–7331

    Article  Google Scholar 

  • Fox JL, Yeager KE (2006) Morphology of the near termination Martian ionosphere: a comparison of models and data. J Geophys Res 111:A10309

    Article  Google Scholar 

  • Fox JL, Yeager KE (2009) MGS electron density profiles: analysis of the peak magnitudes. Icarus 200:468–479

    Google Scholar 

  • Fox JL, Brannon JF, Porter HS (1993) Upper limits to the nightside ionosphere of Mars. Geophys Res Lett 20:1339–1342

    Article  Google Scholar 

  • Fox JL, Zhon P, Bougher SW (1996) The Martian thermosphere/ionosphere at high and low solar activities. Adv Space Res 17(11):203

    Article  Google Scholar 

  • Gurnett DA et al (2005) Radar soundings of the ionosphere of Mars. Science 310:1929–1933

    Article  Google Scholar 

  • Haider SA (1997) Chemistry on the nightside ionosphere of Mars. J Geophys Res 102:407–416. doi:10.1029/96JA02353

    Article  Google Scholar 

  • Haider SA, Mahajan KK (2014) Lower and upper Ionosphere of Mars. Space Sci Rev 182:19–84. doi:10.1007/s11214-014-0058-2

  • Haider SA, Kim J, Nagy AF, Keller CN, Verigin MI, Gringauz KI, Shutte NM, Szego K, Kiraly P (1992) Calculated ionization rates, ion densities, and airglow emission rates due to precipitating electrons in the nightside ionosphere of Mars. J Geophys Res 97(A7):10637–10641.doi:10.1029/92JA00317

    Article  Google Scholar 

  • Haider SA, Seth SP, Kallio E, Oyama KI (2002) Solar EUV and electron-proton-hydrogen atom produced ionosphere on Mars: comparative studies of particle fluxes and ion production rates due to different processes. Icarus 159:18–30. doi:10.1006/icar.2002.6919

    Article  Google Scholar 

  • Haider SA, Singh V, Choksi VR, Maguire WC, Verigin MI (2007) Calculated densities of H3O+(H2O)n, NO2 −(H2O)n, CO3 −(H2O)n and electron in the nighttime ionosphere of Mars: impact of solar wind electron and galactic cosmic rays. J Geophys Res 112:A12309.doi:10.1029/2007JA012530

    Article  Google Scholar 

  • Haider SA, Abdu MA, Batista IS, Sobral JH, Luan X, Kallio E, Maguire WC, Verigin MI, Singh V (2009a) D, E, and F layers in the daytime at high-latitude terminator ionosphere of Mars: comparison with Earth’s ionosphere using COSMIC data. J Geophys Res 114:A03311.doi:10.1029/2008JA13709

    Google Scholar 

  • Haider SA, Abdu MA, Batista IS, Sobral JH, Kallio E, Kallio E, Maguire WC, Verigin MI (2009b) On the responses to solar X-ray flare and coronal mass ejection in the ionosphere of Mars and Earth. Geophys Res Lett 36:L13104. doi:10.1029/2009GL038694

    Article  Google Scholar 

  • Haider SA, Seth SP, Brain DA, Mitchell DL, Majeed T, Bougher SW (2010) Modeling photoelectron transport in the Martian ionosphere at Olympus Mons and Syrtis Major: MGS observations. J Geophys Res 115:A08310. doi:10.1029/2009JA014968

    Google Scholar 

  • Haider SA, Mahajan KK, Kallio E (2011) Mars ionosphere: a review of experimental results and modeling studies. Rev Geophys 49:RG4001

    Article  Google Scholar 

  • Haider SA, McKenna-Lawlor SMP, Fry CD, Jain R, Joshipura KN (2012) Effects of solar X-ray flares in the E region ionosphere of Mars: first model results. J Geophys Res 117:A05326

    Google Scholar 

  • Hanson WB, Sanatani S, Zuccaro R (1977) The Martian ionosphere as observed by the Viking retarding potential analyzers. J Geophys Res 82:4351–4363

    Article  Google Scholar 

  • Hinson DP, Simpson RA, Twicken JD, Tyler GL, Flassar FM (1999) Initial results from radio occultation measurements with Mars Global Surveyor. J Geophys Res 104:26997–27012

    Article  Google Scholar 

  • Ip WH (2012) ENA diagnostic of auroral activity at Mars. Planet Space Sci 63/64:83–86

    Article  Google Scholar 

  • Kallio E, Janhunen P (2001) Atmospheric effects of proton precipitation in the Martian atmosphere and its connection to the Mars-solar wind interaction. J Geophys Res 106:5617–5634

    Article  Google Scholar 

  • Kallio E, Liu K, Javinen R, Pohjola V, Janhunen P (2010) Oxygen ion escape at Mars in a hybrid model: High energy and low energy ions. Icarus 206:152–163. doi:10.1016/j.icarus.2009.05.015

    Article  Google Scholar 

  • Kliore AJ, Fjeldbo G, Seidel BL, Sykes MJ, Woiceshyn PM (1973) S band radio occultation measurements of the atmosphere and topography of Mars with Mariner 9: extended mission coverage of polar and intermediate latitudes. J Geophys Res 78:4331–4351

    Article  Google Scholar 

  • Kolosov MA et al (1975) Results of investigating the Martian atmosphere by radio occultation using Mars 2, Mars 4 and Mars 6 spacecraft. Kosmich Issled 13:54–59

    Google Scholar 

  • Leblanc F, Luhmann JG, Johnson RE, Chassefiere E (2002) Some expected impacts of a solar energetic particle event at Mars. J Geophys Res 107:1058

    Article  Google Scholar 

  • Leblanc F et al (2008) Observations of aurorae by SPICAM ultraviolet spectrograph on board Mars Express: simultaneous ASPERA-3 and MARSIS measurements. J Geophys Res 113:A08311

    Google Scholar 

  • Ledvina SA, Ma Y-J, Kallio E (2008) Modeling and simulating flowing plasmas and related phenomena. Space Sci Rev 139:143–189

    Article  Google Scholar 

  • Lei L, Zhang Y (2009) Model investigation of the influence of the crustal magnetic field on the oxygen ion distribution in the near Martian tail. J Geophys Res 114:A06215. doi:10.1029/2008JA013850

    Google Scholar 

  • Lillis RJ, Fillingim MO, Peticolas LM, Brain DA, Lin RP, Bougher SW (2009) The nightside ionosphere of Mars: modeling the effects of crustal magnetic fields and electron pitch angle distributions on electron impact ionization. J Geophys Res 114:E11009

    Article  Google Scholar 

  • Lillis RJ, Brain DA, England SL, Withers P, Fillingim MO, Safaeinili A (2010) Total electron content in the Mars ionosphere: temporal studies and dependence on solar EUV flux. J Geophys Res 115:A11314

    Article  Google Scholar 

  • Lovell JL, Dulding ML, Humble JE (1998) An extended analysis of the September 1989 Cosmic ray ground level enhancement. J Geophys Res 103:23733–23742. doi:10.1029/98JA02100

    Article  Google Scholar 

  • Lundin R et al (2006) Plasma acceleration above Martian magnetic anomalies. Science 311:980. doi:10.1126/science.1122071

    Article  Google Scholar 

  • Lundin R, Barabash S, Dubinin E, Winingham D, Yamauchi M (2011) Low latitude acceleration of ionospheric ions at Mars. Geophys Res Lett 38:L08108. doi:10.1029/2011%20GL047064

  • Ma Y, Nagy AF, Sokolov IV, Hanse KC (2004) Three dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. J Geophys Res 109:A07211

    Google Scholar 

  • Ma Y et al (2008) Plasma flow and related phenomena in planetary aeronomy. Space Sci Rev 139:311–353. doi:10.1007/s11214-008-9389-1

    Article  Google Scholar 

  • Mahajan KK, Lodhi NK, Singh S (2009) Ionospheric effects of solar flares at Mars. Geophys Res Lett 36:L15207. doi:10.1029/2009GL039454

    Article  Google Scholar 

  • McKenna-Lawlor S, Goncalves P, Keating A, Reitz G, Matthia D (2012) Overview of energetic particle hazards during prospective manned mission to Mars. Planet Space Sci 63/64:12–132

    Article  Google Scholar 

  • Mendillo M, Pi X, Smith S, Martinis C, Wilson J, Hinson D (2004) Ionospheric effects upon a satellite navigation system at Mars. Radio Sci 39:RS2028

    Article  Google Scholar 

  • Mendillo M, Withers P, Hinson D, Rishbeth H, Reinisch B (2006) Effects of solar flares on the ionosphere of Mars. Science 311:1135–1138

    Article  Google Scholar 

  • Mendillo M, Lollo A, Withers P, Matta M, Pätzold M, Tellmann S (2011) Modeling Mars’ ionosphere with constraints from same-day observations by Mars Global Surveyor and Mars Express. J Geophys Res 116:A11303

    Article  Google Scholar 

  • Mitchell DL, Lin RP, Rème H, Crider DH, Cloutier PA, Connerney JEP, Acuña MH, Ness NF (2000) Oxygen auger electrons observed in Mars ionosphere. Geophys Res Lett 27:1871–1874

    Article  Google Scholar 

  • Mitchell DL, Lillis RJ, Lin RP, Connerney JEP, Acuña MH (2007) A global map of Mars’ crustal magnetic field based on electron reflectometer. J Geophys Res 112:E01002

    Google Scholar 

  • Modolo R, Chanteur GM, Dubinin E, Matthews AP (2006) Simulated solar wind plasma interaction with the Martian exosphere: influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary. Ann Geophys 24:3403–3410

    Article  Google Scholar 

  • Morgan DD, Gurnett DA, Kirchner DL, Huff RL, Brain DA, Boynton WV, Acuña MH, Plaut JJ, Picardi G (2006) Solar control of radar wave absorption by the Martian ionosphere. Geophys Res Lett 33:L13202

    Article  Google Scholar 

  • Nagy AF et al (2004) The plasma environment of Mars. Space Sci Rev 111:33–114

    Article  Google Scholar 

  • Nielsen E, Zou H, Gurnett DA, Kirchner DL, Morgan DD, Huff R, Orosei R, Safaeinili A, Plaut JJ, Picardi G (2006) Observations of vertical reflections from the topside Martian ionosphere. Space Sci Rev 126:373–388

    Article  Google Scholar 

  • Pätzold M, Tellmann S, Haüsler B, Hinson D, Schaa R, Tyler GL (2005) A sporadic third layer in the ionosphere of Mars. Science 310:837–839

    Article  Google Scholar 

  • Rishbeth H, Mendillo M (2004) Ionospheric layers of Mars and Earth. Planet Space Sci 52:849–852

    Article  Google Scholar 

  • Rohrbaugh RP, Nisbet JS, Bleuler E, Herman JR (1979) The effects of energetically produced O+ 2 on the ion temperature of the Martian thermosphere. J Geophys Res 84:3327–3336

    Article  Google Scholar 

  • Savich NA, Samovol VA (1976) The night time ionosphere of Mars from Mars 4 and Mars 5 dual frequency radio occultation measurements. Space Res XVI:1009–1010

    Google Scholar 

  • Schnjver CJ, Siscoe GL (2010) Heliophysics. Cambridge University Press, Cambridge

    Google Scholar 

  • Sheel V, Haider SA, Withers P, Kozarev K, Jun I, Kang S, Gronoff G, Simon Wedlund C (2012) Numerical simulation of the effects of a solar energetic particle event on the ionosphere of Mars. J Geophys Res 117:A05312

    Google Scholar 

  • Shinagawa H, Bougher SW (1999) A two-dimensional MHD model of the solar wind interaction with Mars. Earth Planets Space 51:55–62

    Article  Google Scholar 

  • Shinagawa H, Cravens TE (1989) A one-dimensional multispecies magnetohydrodynamic model of the day side ionosphere of Mars. J Geophys Res 94:6506–6516

    Article  Google Scholar 

  • Tobiska WK, Woods T, Eparvier F, Viereck R, Floyd L, Bouwer D, Rottman G, White OR (2000) The solar 2000 empirical solar irradiance model and forecast tool. J Atmos Sol Terr Phys 62:1233–1250. doi:10.1016/S1364-6826(00)00070-5

    Article  Google Scholar 

  • Tyler GL et al (2001) Radio science observations with Mars Global Surveyor: orbit insertion through one Mars year in mapping orbit. J Geophys Res 106:23327–23348. doi:10.1029/2000JE001348

  • Vasiliev MB et al (1975) Preliminary results of dual frequency radio occultation of the Martian ionosphere with the aid of Mars 5 spacecraft. Kosm Issled 13:48–51

    Google Scholar 

  • Verigin MI, Gringauz KI, Shutte NM, Haider SA, Szego K, Kiraly P, Nagy AF, Gombosi TI (1991) On the possible source of the ionization in the nighttime Martian ionosphere 1. Phobos 2 HARP electron spectrometer measurements. J Geophys Res 96:19307–19313

    Article  Google Scholar 

  • Winchester C, Rees D (1995) Numerical models of the Martian coupled thermosphere and ionosphere. Adv Space Res 15(4):51

    Article  Google Scholar 

  • Withers P (2009) A review of observed variability in the dayside ionosphere of Mars. Adv Space Res 44:277–307

    Article  Google Scholar 

  • Withers P (2011) Attenuation of radio signals by the ionosphere of Mars: theoretical development and application to MARSIS observations. Radio Sci 46:RS2004

    Article  Google Scholar 

Download references

Acknowledgement

We acknowledge Shuanggen Jin for his encouragements to write this chapter. Author is grateful to Planetary Data System for providing us radio science data for modelling and analysis. Some part of this chapter is previously published in Space Science Reviews by S.A. Haider and K.K. Mahajan, Lower and Upper Ionosphere of Mars, 2014 doi: 10.1007/s11214-014-0058-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Haider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haider, S.A. (2015). Upper Ionosphere of Mars During Solar Quiet and Disturbed Conditions. In: Jin, S., Haghighipour, N., Ip, WH. (eds) Planetary Exploration and Science: Recent Results and Advances. Springer Geophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45052-9_7

Download citation

Publish with us

Policies and ethics