Skip to main content

Abstract

Phytophthora ramorum is a recently emerged plant pathogen and causal agent of one of the most destructive and devastating diseases currently affecting US horticulture and forests. It is now known to affect more than 100 plant species, including nursery and forest host species. Like many Phytophthora species, P. ramorum is a clonal organism and produces copious chlamydospores. The size of the P. ramorum genome is smaller than most other Phytophthora spp. sequenced to date. The major features of the P. ramorum genome show a large portion of gene-dense, conserved regions with high levels of synteny and colinearity to other Phytophthora spp. and a quarter of the genome is gene-sparse, with highly repetitive and rapidly evolving genes. Unique regions of the genome, outside of the core genome, are thought to be related to host specificity and the hemibiotrophic lifestyle of the pathogen. Phytophthora ramorum is a pathogen that emerged repeatedly in Europe and North America, yet evolutionary analysis of the clonal lineages indicates ancient divergence from ancestrally sexual populations. In both Europe and the US the clonal lineages are accumulating mutations and gradually diverging from the invasive NA1, NA2, or EU1 clones in a process of clonal divergence. Traditional approaches of disease management are typically not viable options for control of sudden oak death, however, rapid advances in genome sequencing provide a bright future for studying challenging pathogens such as P. ramorum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ah-Fong AMV, Bormann-Chung CA, Judelson HS (2008) Optimization of transgene-mediated silencing in Phytophthora infestans and its association with small-interfering RNAs. Fungal Genet Biol 45:1197–1205

    Article  CAS  PubMed  Google Scholar 

  • Allen RL, Bittner-Eddy PD, Grenville-Briggs LJ, Meitz JC, Rehmany AP, Rose LE, Beynon JL (2004) Host-parasite coevolutionary conflict between Arabidopsis and downy mildew. Science 306:1957–1960

    Article  CAS  PubMed  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WWY, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism. Science 306:79--86. doi:10.1126/science.1101156

    Article  CAS  PubMed  Google Scholar 

  • Armstrong MR, Whisson SC, Pritchard L, Bos JIB, Venter E, Avrova AO, Rehmany AP, Bohme U, Brooks K, Cherevach I, Hamlin N, White B, Fraser A, Lord A, Quail MA, Churcher C, Hall N, Berriman M, Huang S, Kamoun S, Beynon JL, Birch PRJ (2005) An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Pro Natl Acad Sci U S A 102:7766–7771

    Article  CAS  Google Scholar 

  • Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, Thines M, Ah-Fong A, Anderson R, Badejoko W, Bittner-Eddy P, Boore JL, Chibucos MC, Coates M, Dehal P, Delehaunty K, Dong S, Downton P, Dumas B, Fabro G, Fronick C, Fuerstenberg SI, Fulton L, Gaulin E, Govers F, Hughes L, Humphray S, Jiang RHY, Judelson H, Kamoun S, Kyung K, Meijer H, Minx P, Morris P, Nelson J, Phuntumart V, Qutob D, Rehmany A, Rougon-Cardoso A, Ryden P, Torto-Alalibo T, Studholme D, Wang Y, Win J, Wood J, Clifton SW, Rogers J, Van den Ackerveken G, Jones JDG, McDowell JM, Beynon J, Tyler BM (2010) Signatures of Adaptation to Obligate Biotrophy in the Hyaloperonospora arabidopsidis Genome. Science 330:1549--1551. doi:10.1126/science.1195203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blair JE, Coffey MD, Park S-Y, Geiser DM, Kang S (2008) A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genet Biol 45:266–277

    Article  CAS  PubMed  Google Scholar 

  • Boutet X, Vercauteren A, Heungens K, Laurent F, Chandelier A (2010) Oospores progenies from Phytophthora ramorum. Fungal Biol 114:369–378

    Article  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret J-P, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kroger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jezequel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Secq M-PO-L, Napoli C, Obornik M, Parker MS, Petit J-L, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van de Peer Y, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239--244. doi:10.1038/nature07410

    Article  CAS  PubMed  Google Scholar 

  • Brasier C, Kirk S (2004) Production of gametangia by Phytophthora ramorum in vitro. Mycol Res 108:823–827

    Article  PubMed  Google Scholar 

  • Brasier CM, Vettraino AM, Chang TT, Vannini A (2010) Phytophthora lateralis discovered in an old growth Chamaecyparis forest in Taiwan. Plant Pathol 59:595–603

    Article  CAS  Google Scholar 

  • Brasier C, Kirk S, Rose J (2006) Differences in phenotypic stability and adaptive variation between the main European and American lineages of Phytophthora ramorum. In: Proceedings of the Third International IUFRO Working Party (S07. 02.09) Meeting: Progress in Research on Phytophthora Diseases of Forest Trees. pp. 166--173

    Google Scholar 

  • California Oak Mortality Task Force (2013) In: Palmieri KM, Frankel SJ (eds) California oak mortality task force report. Online, September 2013

    Google Scholar 

  • Cave GL, Randall-Schadel B, Redlin SC (2005) Risk analysis for Phytophthora ramorum werres, de cock & in’t veld, causal agent of phytophthora canker (sudden oak death), ramorum leaf blight, and ramorum dieback. USDA-ARS, Raleigh, p 77

    Google Scholar 

  • Davidson JM, Wickland AC, Patterson HA, Falk KR, Rizzo DM (2005) Transmission of Phytophthora ramorum in mixed-evergreen forest in California. Phytopathology 95:587–596

    Article  PubMed  Google Scholar 

  • Elliott M, Sumampong G, Varga A, Shamoun SF, James D, Masri S, Grunwald NJ (2011) Phenotypic differences among three clonal lineages of Phytophthora ramorum. For. Pathol. 41:7--14. doi:10.1111/j.1439-0329.2009.00627.x

    Article  Google Scholar 

  • Fellbrich G, Romanski A, Varet A, Blume B, Brunner F, Engelhardt S, Felix G, Kemmerling B, Krzymowska M, Nrnberger T (2002) NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J. 32:375--390. doi:10.1046/j.1365-313X.2002.01454.x

    Article  CAS  PubMed  Google Scholar 

  • Frankel SJ (2008) Sudden oak death and Phytophthora ramorum in the USA: a management challenge. Australas Plant Pathol 37:19–25

    Google Scholar 

  • Goss EM, Carbone I, Grünwald NJ (2009a) Ancient isolation and independent evolution of the three clonal lineages of the exotic sudden oak death pathogen Phytophthora ramorum. Mol Ecol 18:1161–1174

    Article  CAS  PubMed  Google Scholar 

  • Goss EM, Larsen M, Chastagner GA, Givens DR, Grünwald NJ (2009b) Population genetic analysis infers migration pathways of Phytophthora ramorum in US nurseries. PLoS Pathog 5:e1000583

    Article  PubMed Central  PubMed  Google Scholar 

  • Goss EM, Larsen M, Vercauteren A, Werres S, Heungens K, Grünwald NJ (2011) Phytophthora ramorum in Canada: evidence for migration within North America and from Europe. Phytopathology 101:166–171

    Article  PubMed  Google Scholar 

  • Grünwald NJ, Garbelotto M, Goss EM, Heungens K, Prospero S (2012a) Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol 20:131–138

    Article  PubMed  Google Scholar 

  • Grünwald NJ, Goss EM (2011) Evolution and population genetics of exotic and re-emerging pathogens: novel tools and approaches. Annu Rev Phytopathol 49:249–267

    Article  PubMed  Google Scholar 

  • Grünwald NJ, Goss EM, Ivors K, Garbelotto M, Martin FN, Prospero S, Hansen E, Bonants PJM, Hamelin RC, Chastagner G, Werres S, Rizzo DM, Abad G, Beales P, Bilodeau GJ, Blomquist CL, Brasier C, Brière SC, Chandelier A, Davidson JM, Denman S, Elliott M, Frankel SJ, Goheen EM, de Gruyter H, Heungens K, James D, Kanaskie A, McWilliams MG, Man in ‘t Veld W, Moralejo E, Osterbauer NK, Palm ME, Parke JL, Perez Sierra AM, Shamoun SF, Shishkoff N, Tooley PW, Vettraino AM, Webber J, Widmer TL (2009) Standardizing the nomenclature for clonal lineages of the sudden oak death pathogen, Phytophthora ramorum. Phytopathology 99:792–795

    Article  PubMed  Google Scholar 

  • Grünwald NJ, Goss EM (2009) Genetics and evolution of the sudden oak death pathogen Phytophthora ramorum. In: Lamour KH, Kamoun S (eds) Oomycete genetics and genomics: biology, interactions, and research tools. Wiley, Hoboken, New Jersey, pp 179–196

    Chapter  Google Scholar 

  • Grünwald NJ, Goss EM, Press CM (2008) Phytophthora ramorum: a pathogen with a remarkably wide host-range causing sudden oak death on oaks and ramorum blight on woody ornamentals. Mol Plant Pathol 9:729–740

    PubMed  Google Scholar 

  • Grünwald NJ, Werres S, Goss EM, Taylor CR, Fieland VJ (2012b) Phytophthora obscura sp. nov., a new species of the novel Phytophthora subclade 8d. Plant Pathol 61:610–622

    Article  Google Scholar 

  • Haas BJ, Kamoun S, Zody MC, Jiang RHY, Handsaker RE, Cano LM, Grabherr M, Kodira CD, Raffaele S, Torto-Alalibo T, Bozkurt TO, Ah-Fong AMV, Alvarado L, Anderson VL, Armstrong MR, Avrova A, Baxter L, Beynon J, Boevink PC, Bollmann SR, Bos JIB, Bulone V, Cai G, Cakir C, Carrington JC, Chawner M, Conti L, Costanzo S, Ewan R, Fahlgren N, Fischbach MA, Fugelstad J, Gilroy EM, Gnerre S, Green PJ, Grenville-Briggs LJ, Griffith J, Grünwald NJ, Horn K, Horner NR, Hu CH, Huitema E, Jeong DH, Jones AME, Jones JDG, Jones RW, Karlsson EK, Kunjeti SG, Lamour K, Liu Z, Ma L, Maclean D, Chibucos MC, McDonald H, McWalters J, Meijer HJG, Morgan W, Morris PF, Munro CA, O’Neill K, Ospina-Giraldo M, Pinzón A, Pritchard L, Ramsahoye B, Ren Q, Restrepo S, Roy S, Sadanandom A, Savidor A, Schornack S, Schwartz DC, Schumann UD, Schwessinger B, Seyer L, Sharpe T, Silvar C, Song J, Studholme DJ, Sykes S, Thines M, van de Vondervoort PJI, Phuntumart V, Wawra S, Weide R, Win J, Young C, Zhou S, Fry W, Meyers BC, van West P, Ristaino J, Govers F, Birch PRJ, Whisson SC, Judelson HS, Nusbaum C (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393–398

    Article  CAS  PubMed  Google Scholar 

  • Hayden K, Ivors K, Wilkinson C, Garbelotto M (2006) TaqMan Chemistry for Phytophthora ramorum detection and quantification, with a comparison of diagnostic methods. Phytopathology 96:846–854

    Article  CAS  PubMed  Google Scholar 

  • Hayden KJ, Rizzo D, Tse J, Garbelotto M (2004) Detection and quantification of Phytophthora ramorum from California forests using a real-time polymerase chain reaction assay. Phytopathology 94:1075–1083

    Article  CAS  PubMed  Google Scholar 

  • Huberli D, Garbelotto M (2011) Phytophthora ramorum is a generalist plant pathogen with differences in virulence between isolates from infectious and dead-end hosts. Forest Pathol 42:8–13

    Article  Google Scholar 

  • Ivors K, Garbelotto M, Vries IDE, Ruyter-Spira C, Hekkert BT, Rosenzweig N, Bonants P (2006) Microsatellite markers identify three lineages of Phytophthora ramorum in US nurseries, yet single lineages in US forest and European nursery populations. Mol Ecol 15:1493–1505

    Article  CAS  PubMed  Google Scholar 

  • Ivors KL, Hayden KJ, Bonants PJM, Rizzo DM, Garbelotto M (2004) AFLP and phylogenetic analyses of North American and European populations of Phytophthora ramorum. Mycol Res 108:378–392

    Article  CAS  PubMed  Google Scholar 

  • Jiang RHY, Govers F (2006) Nonneutral GC3 and retroelement codon mimicry in Phytophthora. J Mol Evol 63:458–472

    Article  CAS  PubMed  Google Scholar 

  • Jiang RHY, Tripathy S, Govers F, Tyler BM (2008) RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proc Natl Acad Sci 12:4874–4879

    Article  Google Scholar 

  • Judelson HS, Tani S (2007) Transgene-induced silencing of the zoosporogenesis-specific NIFC gene cluster of Phytophthora infestans involves chromatin alterations. Eukaryot Cell 6:1200–1209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamoun S (2006) A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 44:41–60

    Article  CAS  PubMed  Google Scholar 

  • Kamoun S (2007) Groovy times: filamentous pathogen effectors revealed. Curr Opin Plant Biol 10:358–365

    Article  CAS  PubMed  Google Scholar 

  • Kasuga T, Kozanitas M, Bui M, Huberli D, Rizzo DM, Garbelotto M (2012) Phenotypic diversification is associated with host-induced transposon derepression in the sudden oak death pathogen Phytophthora ramorum. PLoS ONE 7:e34728. doi:10.1371/journal.pone.0034728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lamour KH, Mudge J, Gobena D, Hurtado-Gonzales OP, Schmutz J, Kuo A, Miller NA, Rice BJ, Raffaele S, Cano LM, Bharti AK, Donahoo RS, Finley S, Huitema E, Hulvey J, Platt D, Salamov A, Savidor A, Sharma R, Stam R, Storey D, Thines M, Win J, Haas BJ, Dinwiddie DL, Jenkins J, Knight JR, Affourtit JP, Han CS, Chertkov O, Lindquist EA, Detter C, Grigoriev IV, Kamoun S, Kingsmore SF (2012) Genome Sequencing and Mapping Reveal Loss of Heterozygosity as a Mechanism for Rapid Adaptation in the Vegetable Pathogen Phytophthora capsici. Mol. Plant. Microbe Interact. 25:1350--1360. doi:10.1094/MPMI-02-12-0028-R

    CAS  PubMed Central  PubMed  Google Scholar 

  • Links MG, Holub E, Jiang RH, Sharpe AG, Hegedus D, Beynon E, Sillito D, Clarke WE, Uzuhashi S, Borhan MH (2011) De novo sequence assembly of Albugo candida reveals a small genome relative to other biotrophic oomycetes. BMC Genomics 12:503. doi:10.1186/1471-2164-12-503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lévesque CA, Brouwer H, Cano L, Hamilton JP, Holt C, Huitema E, Raffaele S, Robideau GP, Thines M, Win J, Zerillo MM, Beakes GW, Boore JL, Busam D, Dumas B, Ferriera S, Fuerstenberg SI, Gachon CM, Gaulin E, Govers F, Grenville-Briggs L, Horner N, Hostetler J, Jiang RH, Johnson J, Krajaejun T, Lin H, Meijer HJ, Moore B, Morris P, Phuntmart V, Puiu D, Shetty J, Stajich JE, Tripathy S, Wawra S, van West P, Whitty BR, Coutinho PM, Henrissat B, Martin F, Thomas PD, Tyler BM, Vries RPD, Kamoun S, Yandell M, Tisserat N, Buell CR (2010) Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol. 11:R73. doi:10.1186/gb-2010-11-7-r73

    Article  PubMed Central  PubMed  Google Scholar 

  • Martin FN, Coffey MD, Zeller K, Hamelin RC, Tooley P, Garbelotto M, Hughes KJD, Kubisiak T, Bilodeau GJ, Levy L, Blomquist C, Berger PH (2009) Evaluation of molecular markers for Phytophthora ramorum detection and identification: testing for specificity using a standardized library of isolates. Phytopathology 99:390–403

    Article  CAS  PubMed  Google Scholar 

  • Martin FN, Tooley PW, Blomquist C (2004) Molecular Detection of Phytophthora ramorum, the causal agent of sudden oak death in California, and two additional species commonly recovered from diseased plant material. Phytopathology 94:621–631

    Article  CAS  PubMed  Google Scholar 

  • Mascheretti S, Croucher PJ, Kozanitas M, Baker L, Garbelotto M (2009) Genetic epidemiology of the sudden oak death pathogen Phytophthora ramorum in California. Mol Ecol 18:4577–4590

    Article  CAS  PubMed  Google Scholar 

  • Mascheretti S, Croucher PJP, Vettraino A, Prospero S, Garbelotto M (2008) Reconstruction of the sudden oak death epidemic in California through microsatellite analysis of the pathogen Phytophthora ramorum. Mol Ecol 17:2755–2768

    Article  CAS  PubMed  Google Scholar 

  • Meentemeyer R, Rizzo D, Mark W, Lotz E (2004) Mapping the risk of establishment and spread of sudden oak death in California. For Ecol Manage 200:195–214

    Google Scholar 

  • Van Poucke K, Franceschini S, Webber JF, Vercauteren A, Turner JA, McCracken AR, Heungens K, Brasier CM (2012) Discovery of a fourth evolutionary lineage of Phytophthora ramorum: EU2. Fungal Biol 116:1178–1191

    Article  PubMed  Google Scholar 

  • Prospero S, Grünwald NJ, Winton LM, Hansen EM (2009) Migration patterns of the emerging plant pathogen Phytophthora ramorum on the west coast of the United States of America. Phytopathology 99:739–749

    Article  CAS  PubMed  Google Scholar 

  • Prospero S, Hansen EM, Grünwald NJ, Winton LM (2007) Population dynamics of the sudden oak death pathogen Phytophthora ramorum in Oregon from 2001 to 2004. Mol Ecol 16:2958–2973

    Article  CAS  PubMed  Google Scholar 

  • Raffaele S, Kamoun S (2012) Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol 10:417–430

    CAS  PubMed  Google Scholar 

  • Rehmany AP, Gordon A, Rose LE, Allen RL, Armstrong MR, Whisson SC, Kamoun S, Tyler BM, Birch PRJ, Beynon JL (2005) Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell 17:1839–1850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rizzo DM, Garbelotto M, Davidson JM, Slaughter GW, Koike ST (2002) Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Dis 86:205–214

    Article  Google Scholar 

  • Rizzo DM, Garbelotto M, Hansen EM (2005) Phytophthora ramorum: integrative research and management of an emerging pathogen in California and Oregon forests. Annu Rev Phytopathol 43:309–335

    Article  PubMed  Google Scholar 

  • Schornack S, Van Damme M, Bozkurt TO, Cano LM, Smoker M, Thines M, Gaulin E, Kamoun S, Huitema E (2010) Ancient class of translocated oomycete effectors targets the host nucleus. Proc Natl Acad Sci U S A 107:17421–17426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shan W, Cao M, Leung D, Tyler BM (2004) The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b. Mol Plant Microbe Interact 17:394–403

    CAS  PubMed  Google Scholar 

  • Stam R, Jupe J, Howden AJM, Morris JA, Boevink PC, Hedley PE, Huitema E (2013) Identification and characterisation CRN effectors in Phytophthora capsici shows modularity and functional diversity. PLoS ONE 8:e59517. doi:10.1371/journal.pone.0059517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tooley PW, Kyde KL (2007) Susceptibility of some eastern forest species to Phytophthora ramorum. Plant Dis 91:435–438

    Article  Google Scholar 

  • Tooley PW, Kyde KL, Englander L (2004) Susceptibility of selected Ericaceous ornamental host species to Phytophthora ramorum. Plant Dis 88:993–999

    Article  Google Scholar 

  • Torto TA, Li S, Styer A, Huitema E, Testa A, Gow NAR, Van West P, Kamoun S (2003) EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Res 13:1675–1685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tyler BM (2009) Entering and breaking: virulence effector proteins of oomycete plant pathogens. Cell Microbiol 11:13–20

    Article  CAS  PubMed  Google Scholar 

  • Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RHY, Aerts A, Arredondo FD, Baxter L, Bensasson D, Beynon JL, Chapman J, Damasceno CMB, Dorrance AE, Dou D, Dickerman AW, DubchakI L, Garbelotto M, Gijzen M, Gordon SG, Govers F, Grünwald NJ, Huang W, Ivors KL, Jones RW, Kamoun S, Krampis K, Lamour Kurt H, Lee MK, McDonald WH, Medina M, Meijer HJG, Nordberg EK, Maclean DJ, Ospina-Giraldo MD, Morris PF, Phuntumart V, Putnam NH, Rash S, Rose JKC, Sakihama Y, Salamov A, Savidor A, Scheuring CF, Smith BM, Sobral BWS, Terry A, Torto-Alalibo TA, Win J, Xu Z, Zhang H, Grigoriev IV, Rokhsar DS, Boore JL (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261–1266

    Google Scholar 

  • Van West P, Shepherd SJ, Walker CA, Li S, Appiah AA, Grenville-Briggs LJ, Govers F, Gow NAR (2008) Internuclear gene silencing in Phytophthora infestans is established through chromatin remodelling. Microbiology 154:1482–1490

    Google Scholar 

  • Vercauteren A, Boutet X, D’hondt L, Bockstaele EV, Maes M, Leus L, Chandelier A, Heungens K (2011) Aberrant genome size and instability of Phytophthora ramorum oospore progenies. Fungal Genet Biol 48:537–543

    Article  CAS  PubMed  Google Scholar 

  • Vercauteren A, De Dobbelaere I, Grünwald NJ, Bonants P, Van Boackstaele E, Maes M, Heungens K (2010) Clonal expansion of the Belgian Phytophthora ramorum populations based on new microsatellite markers. Mol Ecol 19:92–107

    Article  CAS  PubMed  Google Scholar 

  • Walters K, Sansford C, Slawson D (2009) Phytophthora ramorum and Phytophthora kernoviae in England and Wales—Public Consultation and New Programme. In: Frankel SJ, Kliejunas JT, Palmieri KM (tech. coords) Proceedings of the sudden oak death fourth science symposium, Gen.Tech. Rep. PSW-GTR-229. USDA Forest Service, Pacific Southwest Research Station, Albany, CA, pp 6–14

    Google Scholar 

  • Werres S, Marwitz R, Veld W, De Cock A, Bonants PJM, De Weerdt M, Themann K, Ilieva E, Baayen RP (2001) Phytophthora ramorum sp. nov., a new pathogen on Rhododendron and Viburnum. Mycol Res 105:1155–1165

    Article  CAS  Google Scholar 

  • Whisson SC, Vetukuri RR, Avrova AO, Dixelius C (2012) Can silencing of transposons contribute to variation in effector gene expression in Phytophthora infestans? Fungal Biol 2(2):110–114

    Google Scholar 

  • Zeh DW, Zeh JA, Ishida Y (2009) Transposable elements and an epigenetic basis for punctuated equilibria. BioEssays 31:715–726

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niklaus J. Grünwald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg (outside the USA)

About this chapter

Cite this chapter

Everhart, S.E., Tabima, J.F., Grünwald, N.J. (2014). Phytophthora ramorum . In: Dean, R., Lichens-Park, A., Kole, C. (eds) Genomics of Plant-Associated Fungi and Oomycetes: Dicot Pathogens. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44056-8_8

Download citation

Publish with us

Policies and ethics