Skip to main content

Advertisement

Log in

Nonneutral GC3 and Retroelement Codon Mimicry in Phytophthora

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Phytophthora is a genus entirely comprised of destructive plant pathogens. It belongs to the Stramenopila, a unique branch of eukaryotes, phylogenetically distinct from plants, animals, or fungi. Phytophthora genes show a strong preference for usage of codons ending with G or C (high GC3). The presence of high GC3 in genes can be utilized to differentiate coding regions from noncoding regions in the genome. We found that both selective pressure and mutation bias drive codon bias in Phytophthora. Indicative for selection pressure is the higher GC3 value of highly expressed genes in different Phytophthora species. Lineage specific GC increase of noncoding regions is reminiscent of whole-genome mutation bias, whereas the elevated Phytophthora GC3 is primarily a result of translation efficiency-driven selection. Heterogeneous retrotransposons exist in Phytophthora genomes and many of them vary in their GC content. Interestingly, the most widespread groups of retroelements in Phytophthora show high GC3 and a codon bias that is similar to host genes. Apparently, selection pressure has been exerted on the retroelement’s codon usage, and such mimicry of host codon bias might be beneficial for the propagation of retrotransposons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  • Ah Fong AM, Judelson HS (2004) The hAT -like DNA transposon DodoPi resides in a cluster of retro- and DNA transposons in the stramenopile Phytophthora infestans. Mol Genet Genomics 271:577–585

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Valin F, Lamolle G, Bernardi G (2002) Isochores, GC3 and mutation biases in the human genome. Gene 300:161–168

    Article  PubMed  CAS  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou SG, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kroger N, Lau WWY, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  PubMed  CAS  Google Scholar 

  • Baldauf SL (2003) The deep roots of eukaryotes. Science 300:1703–1706

    Article  PubMed  CAS  Google Scholar 

  • Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G, Olofsson B, Filipski J, Zerial M, Salinas J, Cuny G, Meunier-Rotival M, Rodier F (1985) The mosaic genome of warm-blooded vertebrates. Science 228:953–958

    Article  PubMed  CAS  Google Scholar 

  • Bowman S, Lawson D, Basham D, Brown D, Chillingworth T, Churcher CM, Craig A, Davies RM, Devlin K, Feltwell T, Gentles S, Gwilliam R, Hamlin N, Harris D, Holroyd S, Hornsby T, Horrocks P, Jagels K, Jassal B, Kyes S, McLean J, Moule S, Mungall K, Murphy L, Oliver K, Quail MA, Rajandream MA, Rutter S, Skelton J, Squares R, Squares S, Sulston JE, Whitehead S, Woodward JR, Newbold C, Barrell BG (1999) The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum. Nature 400:532–538

    Article  PubMed  CAS  Google Scholar 

  • Chen SL, Lee W, Hottes AK, Shapiro L, McAdams HH (2004) Codon usage between genomes is constrained by genome-wide mutational processes. Proc Natl Acad Sci USA 101:3480–3485

    Article  PubMed  CAS  Google Scholar 

  • Cooke DE, Drenth A, Duncan JM, Wagels G, Brasier CM (2000) A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet Biol 30:17–32

    Article  PubMed  CAS  Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H, Read ND, Lee YH, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun MH, Bohnert H, Coughlan S, Butler J, Calvo S, Ma LJ, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986

    Article  PubMed  CAS  Google Scholar 

  • Duret L, Mouchiroud D (1999) Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci USA 96:4482–4487

    Article  PubMed  CAS  Google Scholar 

  • Eichinger L, Pachebat JA, Glockner G, Rajandream MA, Sucgang R, Berriman M, Song J, Olsen R, Szafranski K, Xu Q, Tunggal B, Kummerfeld S, Madera M, Konfortov BA, Rivero F, Bankier AT, Lehmann R, Hamlin N, Davies R, Gaudet P, Fey P, Pilcher K, Chen G, Saunders D, Sodergren E, Davis P, Kerhornou A, Nie X, Hall N, Anjard C, Hemphill L, Bason N, Farbrother P, Desany B, Just E, Morio T, Rost R, Churcher C, Cooper J, Haydock S, van Driessche N, Cronin A, Goodhead I, Muzny D, Mourier T, Pain A, Lu M, Harper D, Lindsay R, Hauser H, James K, Quiles M, Babu MM, Saito T, Buchrieser C, Wardroper A, Felder M, Thangavelu M, Johnson D, Knights A, Loulseged H, Mungall K, Oliver K, Price C, Quail MA, Urushihara H, Hernandez J, Rabbinowitsch E, Steffen D, Sanders M, Ma J, Kohara Y, Sharp S, Simmonds M, Spiegler S, Tivey A, Sugano S, White B, Walker D, Woodward J, Winckler T, Tanaka Y, Shaulsky G, Schleicher M, Weinstock G, Rosenthal A, Cox EC, Chisholm RL, Gibbs R, Loomis WF, Platzer M, Kay RR, Williams J, Dear PH, Noegel AA, Barrell B, Kuspa A (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435:43–57

    Article  PubMed  CAS  Google Scholar 

  • Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum KA, Dodson R, Hickey EK, Gwinn M, Dougherty B, Tomb JF, Fleischmann RD, Richardson D, Peterson J, Kerlavage AR, Quackenbush J, Salzberg S, Hanson M, vanVugt R, Palmer N, Adams MD, Gocayne J, Weidman J, Utterback T, Watthey L, McDonald L, Artiach P, Bowman C, Garland S, Fujii C, Cotton MD, Horst K, Roberts K, Hatch B, Smith HO, Venter JC (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580–586

    Article  PubMed  CAS  Google Scholar 

  • Gajendran K, Gonzales MD, Farmer A, Archuleta E, Win J, Waugh ME, Kamoun S (2006) Phytophthora functional genomics database (PFGD): functional genomics of Phytophthora-plant interactions. Nucleic Acids Res 34:D465–D470

    Article  PubMed  CAS  Google Scholar 

  • Hraber PT, Weller JW (2001) On the species of origin: diagnosing the source of symbiotic transcripts. Genome Biol 2:37

    Article  Google Scholar 

  • Ishikawa J, Hotta K (1999) FramePlot: a new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G + C content. FEMS Microbiol Lett 174:251–253

    Article  PubMed  CAS  Google Scholar 

  • Jiang RH, Dawe AL, Weide R, van Staveren M, Peters S, Nuss DL, Govers F (2005) Elicitin genes in Phytophthora infestans are clustered and interspersed with various transposon-like elements. Mol Genet Genomics 273:20–32

    Article  PubMed  CAS  Google Scholar 

  • Judelson HS (2002) Sequence variation and genomic amplification of a family of gypsy-like elements in the oomycete genus Phytophthora. Mol Biol Evol 19:1313–1322

    PubMed  CAS  Google Scholar 

  • Kamoun S, Hraber P, Sobral B, Nuss D, Govers F (1999) Initial assessment of gene diversity for the oomycete pathogen Phytophthora infestans based on expressed sequences. Fungal Genet Biol 28:94–106

    Article  PubMed  CAS  Google Scholar 

  • Kanaya S, Yamada Y, Kudo Y, Ikemura T (1999) Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: gene expression level and species-specific diversity of codon usage based on multivariate analysis. Gene 238:143–155

    Article  PubMed  CAS  Google Scholar 

  • Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    Article  PubMed  CAS  Google Scholar 

  • Kidwell MG, Lisch DR (2001) Perspective: transposable elements, parasitic DNA, and genome evolution. Evolut Int J Org Evolut 55:1–24

    CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Labrador M, Corces VG (1997) Transposable element-host interactions: regulation of insertion and excision. Annu Rev Genet 31:381–404

    Article  PubMed  CAS  Google Scholar 

  • Latijnhouwers M, de Wit PJ, Govers F (2003) Oomycetes and fungi: similar weaponry to attack plants. Trends Microbiol 11:462–469

    Article  PubMed  CAS  Google Scholar 

  • Lerat E, Capy P, Biemont C (2002) Codon usage by transposable elements and their host genes in five species. J Mol Evol 54:625–637

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404

    Article  PubMed  CAS  Google Scholar 

  • Margulis L, Schwarts KV (2000) Five kingdoms: an illustrated guide to the phyla of life on earth. W.H. Freeman, New York

    Google Scholar 

  • McLeod A, Smart CD, Fry WE (2004) Core promoter structure in the oomycete Phytophthora infestans. Eukaryot Cell 3:91–99

    Article  PubMed  CAS  Google Scholar 

  • Nekrutenko A, Li W-H (2001) Transposable elements are found in a large number of human protein-coding genes. Trends Genet 17:619–621

    Article  PubMed  CAS  Google Scholar 

  • Qutob D, Hraber PT, Sobral BWS, Gijzen M (2000) Comparative analysis of expressed sequences in Phytophthora sojae. Plant Physiol 123:243–253

    Article  PubMed  CAS  Google Scholar 

  • Randall TA, Dwyer RA, Huitema E, Beyer K, Cvitanich C, Kelkar H, Fong AM, Gates K, Roberts S, Yatzkan E, Gaffney T, Law M, Testa A, Torto-Alalibo T, Zhang M, Zheng L, Mueller E, Windass J, Binder A, Birch PR, Gisi U, Govers F, Gow NA, Mauch F, van West P, Waugh ME, Yu J, Boller T, Kamoun S, Lam ST, Judelson HS (2005) Large-scale gene discovery in the oomycete Phytophthora infestans reveals likely components of phytopathogenicity shared with true fungi. Mol Plant Microbe Interact 18:229–243

    PubMed  Google Scholar 

  • Rizzo DM, Garbelotto M, Hansen EM (2005) Phytophthora ramorum: integrative research and management of an emerging pathogen in California and Oregon forests. Annu Rev Phytopathol 43:309–335

    Article  PubMed  Google Scholar 

  • Sandhu D, Gill KS (2002) Gene-containing regions of wheat and the other grass genomes. Plant Physiol 128:803–811

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nature Genet 20:43–45

    Article  PubMed  CAS  Google Scholar 

  • Scala S, Carels N, Falciatore A, Chiusano ML, Bowler C (2002) Genome properties of the diatom Phaeodactylum tricornutum. Plant Physiol 129:993–1002

    Article  PubMed  CAS  Google Scholar 

  • Sharp PM, Li WH (1986) An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol 24:28–38

    Article  PubMed  CAS  Google Scholar 

  • Sharp PM, Stenico M, Peden JF, Lloyd AT (1993) Codon usage: Mutational bias, translational selection, or both? Biochem Soc Trans 21:835–841

    PubMed  CAS  Google Scholar 

  • Soanes DM, Skinner W, Keon J, Hargreaves J, Talbot NJ (2002) Genomics of phytopathogenic fungi and the development of bioinformatic resources. Mol Plant Microbe Interact 15:421–427

    PubMed  CAS  Google Scholar 

  • Sueoka N (1995) Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J Mol Evol 40:318–325

    Article  PubMed  CAS  Google Scholar 

  • Sueoka N (1999) Two aspects of DNA base composition: G+C content and translation-coupled deviation from intra-strand rule of A = T and G = C. J Mol Evol 49:49–62

    Article  PubMed  CAS  Google Scholar 

  • Sueoka N, Kawanishi Y (2000) DNA G + C content of the third codon position and codon usage biases of human genes. Gene 261:53–62

    Article  PubMed  CAS  Google Scholar 

  • Topp CN, Zhong CX, Dawe RK (2004) Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci USA 101:15986–15991

    Article  PubMed  CAS  Google Scholar 

  • Zsiros J, Jebbink MF, Lukashov VV, Voute PA, Berkhout B (1999) Biased nucleotide composition of the genome of HERV-K related endogenous retroviruses and its evolutionary implications. J Mol Evol 48:102–111

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Martijn Staats for his advice concerning the statistical analyses, Brett Tyler for helpful suggestions and discussions, and the DOE-Joint Genome Institute (http://www.jgi.doe.gov/index.html), in particular, Brett Tyler, Jeff Boore, and Dan Rokhsar, for P. sojae and P. ramorum genome sequences. This work was financially supported by an Aspasia grant from the Netherlands Organisation for Scientific Research (NWO-Aspasia 015.000.057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francine Govers.

Additional information

Reviewing Editor: Dr. Yves van de Peer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, R.H.Y., Govers, F. Nonneutral GC3 and Retroelement Codon Mimicry in Phytophthora . J Mol Evol 63, 458–472 (2006). https://doi.org/10.1007/s00239-005-0211-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0211-3

Keywords

Navigation