Skip to main content

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 7))

  • 54 Accesses

Abstract

Ion channels involve in the generation of electrical events can be separated in at least three different groups. Voltage-gated ion channels mediate rapid, voltage-dependent changes in membrane conductance during action potentials. Calcium, sodium and potassium channels belong to this group. Ligand-gated ion channels are opened in response to activation of an associated receptor. Typical channels of this type include the nonspecific channels that are opened by activation of muscarinic receptors (Benham et al. 1985) or ATP-receptors (Benham et al. 1987; Friel 1988; Honoré et al. 1989a). Activation of ligand-gated ion channels mediates local increases in membrane conductance, producing depolarization and hyperpolarization of the membrane. Calcium-gated channels are only opened by an increase in cytoplasmic calcium and modulate the membrane potential. Potassium and chloride channels of this type have been identified in smooth muscle (Coleman and Parkington 1987; Pacaud et al. 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • AmĂ©dĂ©e T, Renaud JF, Jmari K, Lombet A, Mironneau J, Lazdunski M (1986) The presence of Na channels in myometrial smooth muscle cells is revealed by specific neurotoxins. Biochem Biophys Res Comm 137:675–681

    Article  PubMed  Google Scholar 

  • AmĂ©dĂ©e T, Mironneau C, Mironneau J (1987) The calcium channel current of pregnant rat single myometrial cells in short-term primary culture. J Physiol 392:253–272

    PubMed  Google Scholar 

  • Bean B (1984) Nitrendipine block of cardiac calcium channels: high affinity binding to the inactivated state. Proc Natl Acad Sci USA 81:1–30

    Article  Google Scholar 

  • Benham CD, Bolton TB, Lang RJ (1985) Acetylcholine activates an inward current in single mammalian smooth muscle cells. Nature 316:345–347

    Article  PubMed  CAS  Google Scholar 

  • Benham CD, Hess T, Tsien R (1987) Two types of calcium channels in single smooth muscle cells from rabbit ear artery studied with whole-cell and single-channel recordings. Circ Res 61:110–116

    Google Scholar 

  • Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    PubMed  CAS  Google Scholar 

  • Catterall WA (1980) Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Ann Rev Pharmacol Toxicol 20:15–43

    CAS  Google Scholar 

  • Coleman HA, Parkington HC (1987) Single channel Cl- and K+ currents from cells of uterus not treated with enzymes. PflĂ¼gers Arch 410:560–562

    Article  PubMed  CAS  Google Scholar 

  • Dacquet C, Pacaud P, Loirand G, Mironneau C, Mironneau J (1988) Comparison of binding affinities and calcium current inhibitory effects of a 1,4-dihydropyridine derivative (PN 200–110) in vascular smooth muscle. Biochem Biophys Res Comm 152: 1165–1172

    Article  PubMed  CAS  Google Scholar 

  • Eckert R, Chad JD (1984) Inactivation of Ca channels. Prog Biophys Mol Biol 44:215–267

    Article  PubMed  CAS  Google Scholar 

  • Fleckenstein A (1977) Specific pharmacology of calcium ion in myocardium, cardiac pacemakers, and vascular smooth muscle. Annu Rev Pharmacol Toxicol 17:149–166

    Article  PubMed  CAS  Google Scholar 

  • Fournier F, HonorĂ© E, BrĂ»lĂ© G, Mironneau J, Guilbault P (1989) Expression of Ba currents in Xenopus oocyte injected with pregnant rat myometrium mRNA. PflĂ¼gers Arch 413:682–684

    Article  PubMed  CAS  Google Scholar 

  • Fox A, Nowycky M, Tsien R (1987) Kinetic and pharmacological properties distinguish three types of calcium currents in chick sensory neurones. J Physiol 394:149–172

    PubMed  CAS  Google Scholar 

  • Friel D (1988) An ATP-sensitive conductance in single smooth muscle cells from the rat vas deferens. J Physiol 401:361–380

    PubMed  CAS  Google Scholar 

  • Hamilton S, Yatani A, Brush K, Schwartz A, Brown A (1987) A comparison between the binding and electrophysiological effects of dihydropyridines on cardiac membranes. Mol Pharmacol 31:221–226

    PubMed  CAS  Google Scholar 

  • Hess P, Tsien RW (1984) Mechanism of ion permeation through calcium channels. Nature 309:453–455

    Article  PubMed  CAS  Google Scholar 

  • Hille B, Schwarz W (1978) Potassium channels as multi-ion single-file pores. J Gen Physiol 72:409–442

    Article  PubMed  CAS  Google Scholar 

  • Hollingsworth M, Downing S (1988) Calcium entry blockers and the uterus. Med Sci Res 16:1–16

    CAS  Google Scholar 

  • HonorĂ© E, Martin C, Mironneau C, Mironneau J (1989a) An ATP-sensitive conductance in cultured smooth muscle cells from pregnant rat myometrium. Am J Physiol 257:C297–C309

    Google Scholar 

  • HonorĂ© E, AmĂ©dĂ©e T, Martin C, Dacquet C, Mironneau J (1989b) Calcium channel current and its sensitivity to (+)isradipine in cultured pregnant rat myometrial cells. PflĂ¼gers Arch 414:477–483

    Article  PubMed  Google Scholar 

  • Inoue Y, Sperelakis N (1991) Gestational change in Na+ and Ca2+ channel current densities in rat myometrial smooth muscle cells. Am J Physiol 260:C658–C663

    Google Scholar 

  • Inoue Y, Nakao K, Okabe K, Izumi H, Kanda S, Kitamura K, Kuriyama H (1990) Some electrical properties of human pregnant myometrium. Am J Obstet Gynecol 162:1090–1098

    Article  PubMed  CAS  Google Scholar 

  • Jmari K, Mironneau C, Mironneau J (1986) Inactivation of calcium channel current in rat uterine smooth muscle: evidence for calcium and voltage-mediated mechanisms. J Physiol 380:111–126

    PubMed  CAS  Google Scholar 

  • Jmari K, Mironneau C, Mironneau J (1987) Selectivity of calcium channels in rat uterine smooth muscle: interactions between sodium, calcium and barium ions. J Physiol 384:247–261

    PubMed  CAS  Google Scholar 

  • Kokubun S, Prod’Hom B, Becker C, Porzig H, Reuter H (1987) Studies on Ca channels in intact cardiac cells: voltage-dependent effects and cooperative interactions of dihydropyridine enantiomers. Mol Pharmacol 30:571–584

    Google Scholar 

  • Loirand G, Pacaud P, Mironneau C, Mironneau J (1986) Evidence for two distinct calcium channels in rat vascular smooth muscle cells in short-term primary culture. PflĂ¼gers Arch 407:566–568

    Article  PubMed  CAS  Google Scholar 

  • Loirand G, Mironneau C, Mironneau J, Pacaud P (1989) Two types of calcium currents in single smooth muscle cells from rat portal vein. J Physiol 412:333–349

    PubMed  CAS  Google Scholar 

  • Martin C, Arnaudeau S, Jmari K, Rakotoarisoa L, Sayet I, Dacquet C, Mironneau C, Mironneau J (1990) Identification and properties of voltage-sensitive sodium channels in smooth muscle cells from pregnant rat myometrium. Mol Pharmacol 38:667–673

    PubMed  CAS  Google Scholar 

  • Mironneau J (1973) Excitation-contraction coupling in voltage-clamped uterine smooth muscle. J Physiol 233:127–141

    PubMed  CAS  Google Scholar 

  • Mironneau J (1976) Effects of oxytocin on ionic currents underlying rhythmic activity and contraction in uterine smooth muscle. PflĂ¼gers Arch 363:113–116

    Article  PubMed  CAS  Google Scholar 

  • Mironneau J (1990) Ion channels and excitation-contraction coupling in myometrium. In: Garfield R (ed) Uterine contractility, Serono Symposia, Norwell, pp 9–19

    Google Scholar 

  • Mironneau J, Martin C, Arnaudeau S, Jmari K, Rakotoarisoa L, Sayet I, Mironneau C (1990) High affinity binding sites for [H]saxitoxin are associated with voltage-dependent sodium channels in portal vein smooth muscle. Eur J Pharmacol 184:315–319

    Article  PubMed  CAS  Google Scholar 

  • Nakai Y, Kao CY (1983) Changing properties of Na+ and Ca2+ components of the early inward current in the rat myometrium during pregnancy. Fed Proc 42:313

    Google Scholar 

  • Nilius B, Hess P, Lansman JB, Tsien RW (1985) A novel type of cardiac calcium channels in ventricular cells. Nature 316:443–446

    Article  PubMed  CAS  Google Scholar 

  • Ohya Y, Sperelakis N (1989) Fast Na+ and slow Ca2+ channels in single uterine muscle cells from pregnant rats. Am J Physiol 257:C408–C412

    Google Scholar 

  • Okabe K, Kitamura K, Kuriyama H (1988) The existence of a highly tetrodotoxin sensitive Na channel in freshly dispersed smooth muscle cells of the rabbit main pulmonary artery. PflĂ¼gers Arch 411:423–428

    Article  PubMed  CAS  Google Scholar 

  • Pacaud P, Loirand G, Mironneau C, Mironneau J (1989) Calcium-activated chloride current in rat vascular smooth muscle cells in short-term primary culture. PflĂ¼gers Arch 413:629–636

    Article  PubMed  CAS  Google Scholar 

  • Pidoplichko VI (1986) Two different tetrodotoxin-separable inward sodium currents in the membrane of isolated cardiomyocytes. Gen Physiol Biophys 6:593–604

    Google Scholar 

  • Rogart RB, Cribbs LL, Muglia LK, Kephart DD, Kaiser MW (1989) Molecular cloning of a putative tetrodotoxin-resistant rat heart Na+ channel iso-form. Proc Natl Acad Sci USA 86:8170–8174

    Article  PubMed  CAS  Google Scholar 

  • Romey G, Lazdunski M (1982) Lipid-soluble toxins thought to be specific for Na+ channels block Ca2+ channels in neuronal cells. Nature 297:79–80

    Article  PubMed  CAS  Google Scholar 

  • Savineau JP, Mironneau C, Mironneau J (1988) Contractile properties of chemically skinned fibers from pregnant rat myometrium: existence of an internal Ca-store. PflĂ¼gers Arch 411:296–303

    Article  PubMed  CAS  Google Scholar 

  • Soloff MS (1984) Regulation of oxytocin action at the receptor level. In: Bottari S, Thomas JP, Vokaer A, Vokaear R (eds) Uterine contractility. Masson, Paris, pp 261–264

    Google Scholar 

  • Sturek M, Hermsmeyer K (1986) Calcium and sodium channels in spontaneously contracting vascular muscle cells. Science 233:475–478

    Article  PubMed  CAS  Google Scholar 

  • Tsien RW, Hess P, McCleskey EW, Rosenberg RL (1987) Calcium channels: mechanisms of selectivity, permeation and block. Annu Rev Biophys Chem 16:265–290

    Article  CAS  Google Scholar 

  • Yoshino M, Someya T, Nishio A, Yazawa K, Usuki T, Yabu H (1989) Multiple types of voltage-dependent Ca channels in mammalian intestinal smooth muscle cells. Pfltigers Arch 414:401–409

    Article  CAS  Google Scholar 

  • Young RC, Herndon-Smith L (1991) Characterization of sodium channels in cultured human uterine smooth muscle cells. Am J Obstet Gynecol 164:175–181

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

K. Chwalisz R. E. Garfield

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mironneau, J. (1994). Myometrial Electrophysiology. In: Chwalisz, K., Garfield, R.E. (eds) Basic Mechanisms Controlling Term and Preterm Birth. Ernst Schering Research Foundation Workshop, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21660-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21660-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21662-0

  • Online ISBN: 978-3-662-21660-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics