Skip to main content

Mitochondrial and Vacuolar ATPases

  • Chapter
Biochemistry and Molecular Biology

Part of the book series: The Mycota ((MYCOTA,volume 3))

Abstract

Mitochondrial and vacuolar ATPases, often referred to as F-type and V-type ATPases, respectively, are among the most complex enzymes of the cell. Many structural features are shared by both types. They are particularly large enzymes comprised of as many as 14 different types of subunits having aggregate molecular weights of 500–800kDa. Each enzyme can be separated into two structural entities, a membrane sector called F0 or V0 and a water-soluble peripheral sector called F1 or V1. The two types of ATPases also share a common evolutionary origin (disscussed below). However, in their current roles in the cell, they have diverged functionally. The mitochondrizl ATPase serves as the primary producer of ATP in the cell, while the vacuolar ATPase is an zvid consumer of ATP, using the energy derived from ATP hydrolysis to drive a variety of cellular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams JP, Leslie AGW, Lutter R, Walker JE (1994) Structure at 2.8 A resolution of F,-ATPase from bovine heart mitochondria. Nature 370: 621–628

    Article  PubMed  CAS  Google Scholar 

  • Abrahams JP, Lutter R, Todd RJ, van Raaij MJ, Leslie AGW, Walker JE (1993) Inherent asymmetry of the structure of F,-ATPase from bovine heart mitochondria at 6.51 resolution. EMBO J 12: 1775–1780

    PubMed  CAS  Google Scholar 

  • Akashi A, Yoshida Y, Nakagoshi H, Kuroki K, Hashimoto T, Tagawa K, Imamoto F (1988) Molecular cloning and expression of a gene for a factor which stabilizes formation of inhibitor-mitochondrial ATPase complex from Saccharomyces cerevisiae. J Biochem 104: 526–530

    PubMed  CAS  Google Scholar 

  • Anraku Y, Umemoto N, Hirata R, Wada Y (1989) Structure and function of the yeast vacuolar membrane proton ATPasc. J Bioenerg Biomembr 21.589–603

    Google Scholar 

  • Apperson M, Jensen RE, Suda K, Witte C, Yaffe MP (1990) A yeast protein, homologous to the proteolipid of the chromaffin granule proton-ATPase, is important for cell growth. Biochem Biophys Res Commun 168: 574–579

    Article  PubMed  CAS  Google Scholar 

  • Arai H, Terres G, Pink S, Forgac M (1988) Topography and subunit stoichiometry of the coated vesicle proton pump. J Biol Chem 263: 8796–8802

    PubMed  CAS  Google Scholar 

  • Arai K, Shimaya A, Hiratani N, Ohkuma S (1993) Purification and characterization of lysosomal H’-ATPase. An anion sensitive V-type H’-ATPase from rat liver lysosomes. J Biol Chem 268: 5649–5660

    Google Scholar 

  • Bachhawat AK, Manolson MF, Murdock DG, Garman JD, Jones EW (1993) The VPH2 gene encodes a 25kDa protein required for activity of the yeast vacuolar FPATPase. Yeast 9: 175–184

    Article  PubMed  CAS  Google Scholar 

  • Banta LM, Robinson JS, Klionsky DJ, Emr SD (1988) Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting. J Cell Biol 107: 1369–1383

    Article  PubMed  CAS  Google Scholar 

  • Bauerle C, Ho MN, Lindorfer MA. Stevens TH (1993) The Saccharomyces cerevisiae VMA6 gene encodes the 36kDa subunit of the vacuolar H’-ATPase membrane sector. J Biol Chem 268:12749–12757

    Google Scholar 

  • Beltran C, Nelson N (1992) The membrane sector of vacuolar H’-ATPases by itself is impermeable to protons. Acta Physiol Scand 146: 41–47

    Article  CAS  Google Scholar 

  • Beltran C, Kopecky J, Pan Y-CE. Nelson H, Nelson N (1992) Cloning and mutational analysis of the gene encoding subunit C of yeast vacuolar HT-ATPase. J Biol Chem 267:774–779

    Google Scholar 

  • Bianchet M, Ysern X, Hullihen J, Pedersen PL, Amzel LM (1991) Mitochondrial ATP synthase. Quarternary structure of the F, moiety at 3.6A determined by X-ray diffraction analysis. J Biol Chem 266: 21197–21201

    PubMed  CAS  Google Scholar 

  • Bittner-Eddy P, Monroy AF, Brambl R (1994) Expression of mitochondrial genes in the germinating conidia of Neurospora crassa. J Mol Biol 235: 881–897

    Article  PubMed  CAS  Google Scholar 

  • Blair HC, Teitelbaum SL, Ghiselli R, Gluck S (1989) Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245: 855–857

    Article  PubMed  CAS  Google Scholar 

  • Bowman BJ, Bowman EJ (1986) H’-ATPases from mitochondria, plasma membranes, and vacuoles of fungal cells. J Membr Biol 94: 83–97

    Article  PubMed  CAS  Google Scholar 

  • Bowman BJ, Mainzer SE, Allen KE, Slayman CW (1978) Effects of inhibitors on the plasma membrane and mitochondria] adenosine triphosphatases of Neurospora crassa. Biochim Biophys Acta 512: 13–28

    Article  PubMed  CAS  Google Scholar 

  • Bowman BJ, Allen R, Wechser MA, Bowman EJ (1988) Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vina-2 encoding the 57-kDa polypeptide and comparison to vma-1. J Biol Chem 263: 14002–14007

    PubMed  CAS  Google Scholar 

  • Bowman BJ, Dschida WJ, Harris T, Bowman EJ (1989) The vacuolar ATPase of Neurospora crassa contains an F,-like structure. J Biol Chem 264: 15606–15612

    PubMed  CAS  Google Scholar 

  • Bowman BJ, Vâzquez-Laslop N, Bowman EJ (1992) The vacuolar ATPase of Neurospora crassa. J Bioenerg Biomembr 24: 361–370

    Article  PubMed  CAS  Google Scholar 

  • Bowman EJ, Bowman BJ (1988) Purification of vacuolar membranes, mitochondria, and plasma membranes from Neurospora crassa and modes of discriminating among the different H’-ATPases. Methods Enzymol 157: 562–573

    Article  PubMed  CAS  Google Scholar 

  • Bowman EJ, Knock T (1992) Structures of the genes encoding the a and ß subunits of the Neurospora crassa mitochondrial ATP synthase. Gene 114: 157–163

    Article  PubMed  CAS  Google Scholar 

  • Bowman EJ, Mandala S, Taiz L, Bowman BJ (1986) Structural studies of the vacuolar membrane ATPase from Neurospora crassa and comparison with the tonoplast membrane ATPase from Zea mays. Proc Natl Acad Sci USA 83: 48–52

    Article  PubMed  CAS  Google Scholar 

  • Bowman EJ, Siebers A, Altendorf K (1988a) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA 85: 7972–7976

    Article  PubMed  CAS  Google Scholar 

  • Bowman EJ, Tenney K, Bowman BJ (1988b) Isolation of genes encoding the Neurospora vacuolar ATPase. Analysis of vma-1 encoding the 67-kDa subunit reveals homology to other ATPases. J Biol Chem 263: 13994–14001

    PubMed  CAS  Google Scholar 

  • Bowman EJ, Steinhardt A, Bowman BJ (1995) Isolation of the vma-4 gene encoding the 26kDa subunit of the Neurospora crassa vacuolar ATPase. Biochim Biophys Acta 1237: 95–98

    Article  PubMed  Google Scholar 

  • Boyer PD (1987) The unusual enzymology of ATP synthase. Biochemistry 26: 8503–8507

    Article  PubMed  CAS  Google Scholar 

  • Brown TA, Ray JA, Waring RB, Scazzocchio C, Davies RW (1984) A mitochondrial reading frame which may code for a second form of ATPase subunit 9 in Aspergillus nidulans. Curr Genet 8: 489–492

    Article  CAS  Google Scholar 

  • Collinson IR, Runswick MJ, Buchanan SK, Fearnley IM, Skehel JM, van Raaij MJ, Griffiths DE, Walker JE (1994) F„ membrane domain of ATP synthase from bovine heart mitochondria: purification, subunit composition, reconstitution with F,-ATPase. Biochem 33: 7971–7978

    Article  CAS  Google Scholar 

  • Cooper AA, Chen Y-J, Lindorfer MA, Stevens TH (1993) Protein splicing of the yeast TFP1 intervening protein sequence: a model for self-excision. EMBO J 12: 2575–2583

    PubMed  CAS  Google Scholar 

  • Cox GB, Jans DA, Fimmel AL, Gibson F, Hatch L (1984) Hypothesis. The mechanism of ATP synthase conformational change by rotation of the b-subunit. Biochim Biophys Acta 768: 201–208

    Google Scholar 

  • Cramer CL, Davis RH (1984) Polyphosphate-cation interaction in the amino acid-containing vacuole of Neurospora crassa. J Biol Chem 259: 5152–5157

    PubMed  CAS  Google Scholar 

  • Cramer CL, Ristow JL, Paulus TJ, Davis RH (1983) Methods for mycelial breakage and isolation of mitochondria and vacuoles of Neurospora. Anal Biochem 128: 384–392

    Article  PubMed  CAS  Google Scholar 

  • Cridder BP, Xie X-S, Stone DK (1994) Bafilomycin inhibits proton flow through the H’ channel of vacuolar proton pumps. J Biol Chem 269: 17379–17381

    Google Scholar 

  • Cross RL (1992) The reaction mechanism of F„F,-ATP synthases. In: Ernster L (ed) Molecular mechanisms in bioenergetics. Elsevier, Amsterdam, pp 317–330

    Chapter  Google Scholar 

  • Denda K, Konishi J, Hajiro K, Oshima T, Date T, Yoshida M (1990) Structure of an ATPase operon of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius. J Biol Chem 265: 21509–21513

    PubMed  CAS  Google Scholar 

  • Divita G, Di Pietro A, Deléage G, Roux B, Gautheron DC (1991) Intrinsic tryptophan fluorescence of Schizosaccharomyces pombe mitochondria) F,-ATPase. A powerful probe for phosphate and nucleotide interactions. Biochemistry 30: 3256–3262

    Google Scholar 

  • Divita G, Di Pietro A, Roux B, Gautheron DC (1992) Differential nucleotide binding to catalytic and noncatalytic sites and related conformational changes involving a/ß-subunit interactions as monitored by sensitive intrinsic fluorescence in Schizosaccharomyces pombe mitochondria) F,. Biochemistry 31: 5791–5798

    Article  PubMed  CAS  Google Scholar 

  • Divita G, Goody RS, Gautheron DC, Di Pietro A (1993) Structural mapping of catalytic site with respect to a-subunit and noncatalytic site in yeast mitochondrial F,ATPase using fluorescence resonance energy transfer. J Biol Chem 268: 13178–13186

    PubMed  CAS  Google Scholar 

  • Doherty RD, Kane PM (1993) Partial assembly of the yeast vacuolar H’-ATPase in mutants lacking one subunit of the enzyme. J Biol Chem 268: 16845–16851

    PubMed  CAS  Google Scholar 

  • Dröse S, Bindseil KU, Bowman EJ, Siebers A, Zeeck A, Altendorf K (1993) Inhibitory effect of modified bafilomycins and concanamycins on P- and V-type adenosinetriphosphatases. Biochemistry 32: 3902–3906

    Article  PubMed  Google Scholar 

  • Dschida WJ, Bowman BJ (1992) Structure of the vacuolar ATPase from Neurospora crassa as determined by electron microscopy. J Biol Chem 267: 18783–18789

    PubMed  CAS  Google Scholar 

  • Dschida WJ, Bowman BJ (1995) The vacuolar ATPase: sulfite stabilization and the mechanism of nitrate inactivation. J Biol Chem 270: 1557–1563

    Article  PubMed  CAS  Google Scholar 

  • Dunn SD (1992) The polar domain of the b subunit of Escherichia coli F,F„-ATPase forms an elongated dimer that interacts with the F, sector. J Biol Chem 267: 7630–7636

    PubMed  CAS  Google Scholar 

  • Falson P, Di Pietro A, Jault J-M, Gautheron DC, Boutry M (1989) Purification from a yeast mutant of mitochondrial Fl with modified ß-subunit. High affinity for nucleotides and high negative cooperativity of ATPase activity. Biochim Biophys Acta 975: 119–126

    Google Scholar 

  • Falson P, Leterme S, Capiau C, Boutry M (1991a))3subunit of mitochondrial F,-ATPase from the fission yeast. Deduced sequence of the wild type protein and identification of a mutation that increases nucleotide binding. Eur J Biochem 200: 61–67

    Google Scholar 

  • Falson P, Maffey L, Conrath K, Boutry M (1991b) a subunit of mitochondrial F,-ATPase from the fission yeast. Deduced sequence of the wild type and identification of a mutation that alters apparent negative cooperativity. J Biol Chem 266: 287–293

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Forgac M (1994) Inhibition of vacuolar H’ATPase by disulfide bond formation between cysteine 254 and cysteine 532 in subunit A. J Biol Chem 269: 13224–13230

    PubMed  CAS  Google Scholar 

  • Fillingame RH (1990) Molecular mechanics of ATP synthesis by F,F„-type H’-transporting ATP synthases. In: Krulwich TA (ed) The bacteria, vol XII. Academic Press, New York, pp 345–391

    Google Scholar 

  • Fillingame RH (1992) H` transport and coupling by the F„ sector of the ATP synthase: insights into the molecular mechanism of function. J Bioenerg Biomembr 24: 485–491

    Article  PubMed  CAS  Google Scholar 

  • Fillingame RH, Girvin ME, Frage D, Zhang Y (1993) Correlations of structure and function in H* translocating subunit c of F,F„ ATP synthase. Ann NY Acad Sci 671: 323–334

    Article  Google Scholar 

  • Forgac M (1989) Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev 69: 765–796

    PubMed  CAS  Google Scholar 

  • Foury F (1990) The 31-kDa polypeptide is an essential subunit of the vacuolar ATPase in Saccharomyces cerevisiae. J Biol Chem 265: 18554–18560

    PubMed  CAS  Google Scholar 

  • Futai M, Noumi T, Maeda M (1989) ATP synthase (FLATPase): results by combined biochemical and molecular biological approaches. Annu Rev Biochem 58: 111–136

    Article  PubMed  CAS  Google Scholar 

  • Ghislain M, Bowman EJ (1992) Sequence of the genes encoding subunits A and B of the vacuolar H’-ATPase of Schizosaccharomyces pombe. Yeast 8: 791–799

    Article  PubMed  CAS  Google Scholar 

  • Gimble FS, Thorner J (1992) Homing of a DNA endonuclease gene by meiotic gene conversion in Saccharomyces cerevisiae. Nature 357: 301–306

    Article  PubMed  CAS  Google Scholar 

  • Giraud M-F, Velours J (1994) ATP synthase of yeast mitochondria: isolation of the Fl 6 subunit, sequence and disruption of the structural gene. Eur J Biochem 222: 851–859

    Article  PubMed  CAS  Google Scholar 

  • Gogarten JP, Kibak H, Dittrich P, Taiz L, Bowman EJ, Bowman BJ, Manolson MF, Poole RJ, Date T, Oshima T, Konishi J, Denda K, Yoshida M (1989) Evolution of the vacuolar H’-ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci USA 86: 6661–6665

    Article  PubMed  CAS  Google Scholar 

  • Gogol EP, Aggeler R, Sagermann M, Capaldi RA (1989a) Cryoelectron microscopy of Escherichia coli F, adenosinetriphosphatase decorated with monoclonal antibodies to individual subunits of the complex. Biochemistry 28: 4717–4724

    Article  PubMed  CAS  Google Scholar 

  • Gogol EP, Lücken U, Bork T, Capaldi RA (1989b) Molecular architecture of Escherichia coli F, adenosinetriphosphatase. Biochemistry 28: 4709–4716

    Article  PubMed  CAS  Google Scholar 

  • Gräf R, Lepier A, Harvey WR, Wieczorck H (1994) A novel 14-kDa V-ATPase subunit in the tobacco hornworm midgut. J Biol Chem 269: 3767–3774

    PubMed  Google Scholar 

  • Graham LA, Hill KJ, Stevens TH (1994) VMA7 encodes a novel 14-kDa subunit of the Saccharonryces cerevisiae vacuolar H’-ATPase complex. J Biol Chem 269: 25974–25977

    Google Scholar 

  • Graham LA, Hill KJ, Stevens TH (1995) VMA8 encodes a 32-kDa V, subunit of the Saccharomyces cerevisiae vacuolar H’-ATPase required for function and assembly of the enzyme complex. J Biol Chem 270: 15037–15044

    Google Scholar 

  • Greenawalt JW, Hall DO, Wallis OC (1967) Preparation and properties of Neurospora mitochondria. Methods Enzymol 10: 142–147

    Article  CAS  Google Scholar 

  • Griffiths DE, Houghton RL (1974) Studies on energy linked reactions. Modified mitochondrial ATPase of oligomycin-resistant mutants of Saccharomyces cerevisiae. Eur J Biochem 46: 157–167

    Article  PubMed  CAS  Google Scholar 

  • Gu HH, Gallagher MJ, Rupkey S, Dean GE (1990) Gene and derived peptide sequences for C. tropicalis vacuolar ATPase subunit b. Nucl Acids Res 18: 7446

    Article  PubMed  CAS  Google Scholar 

  • Gu HH, Xu J, Gallagher M, Dean GE (1993) Peptide splicing in the vacuolar ATPase subunit A from Candida tropicalis. J Biol Chem 268: 7372–7381

    PubMed  CAS  Google Scholar 

  • Guélin E, Chevallier J, Rigoulet M. Guérin B, Velours J (1993) ATP synthase of yeast mitochondria. Isolation and disruption of the ATPe gene. J Biol Chem 268: 161–167

    Google Scholar 

  • Hager A, Lanz C (1989) Essential sulfhydryl groups in the catalytic center of the tonoplast H’-ATPase from coleoptiles of Zea mays L. as demonstrated by the biotin-streptavidin-peroxidase system. Planta 180: 116–122

    Article  CAS  Google Scholar 

  • Hermolin J, Fillingame RH (1989) H’-ATPase activity of Escherichia coli F,F„ is blocked after reaction of dicyclohexylcarbodiimide with a single proteolipid (subunit e) of the F„ complex. J Biol Chem 264: 3896–3903

    PubMed  CAS  Google Scholar 

  • Hill KJ, Stevens TH (1994) Vma2lp is a yeast membrane protein retained in the endoplasmic reticulum by a di-lysine motif and is required for the assembly of the vacuolar H’-ATPase complex. Mol Biol Cell 5: 1039–1050

    PubMed  CAS  Google Scholar 

  • Hirata R, Ohsumi Y, Anraku Y (1989) Functional molecular masses of vacuolar membrane H’-ATPase from Saccharomyces cerevisiae as studied by radiation inactivation analysis. FEBS Lett 244: 397–401

    Article  PubMed  CAS  Google Scholar 

  • Hirata R, Ohsumi Y, Nakano A, Kawasaki H, Suzuki K, Anraku Y (1990) Molecular structure of a gene, VMA7, encoding the catalytic subunit of H’-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 265: 6726–6733

    CAS  Google Scholar 

  • Hirata R, Umemoto N, Ho MN, Ohya Y, Stevens TH, Anraku Y (1993) VMAl2 is essential for assembly of the vacuolar H’-ATPase subunits onto the vacuolar membrane in Saccharomyces cerevisiae. J Biol Chem 268: 961–967

    Google Scholar 

  • Hirsch S, Strauss A, Masood K, Lee S. Sukhatme V, Gluck S (1988) Isolation and sequence of a eDNA clone encoding the 31-kDa subunit of bovine kidney vacuolar FLATPase. Proc Nall Acad Sci USA 85: 3004–3008

    Article  CAS  Google Scholar 

  • Ho MN, Hill KJ, Lindorfer MA, Stevens TH (1993a) Isolation of vacuolar membrane H’-ATPase-deficient yeast mutants; the VMAS and VMA4 genes are essential for assembly and activity of the vacuolar H’-ATPase. J Biol Chem 268: 221–227

    PubMed  CAS  Google Scholar 

  • Ho MN, Hirata R, Umemoto N. Ohya Y. “I’akasuki A, Stevens TH, Anraku Y (1993b) VMA13 encodes a 54-kDa vacuolar H’-ATPase subunit required for activity but not assembly of the enzyme complex in Saccharomyces cerevisiae. J Biol Chem 268:18286—18292

    Google Scholar 

  • Ichikawa N, Yoshida Y, Hashimoto T, Ogasawara N, Yoshikawa H. Imamoto F, Tagawa K (1990) Activation of ATP hydrolysis by an uncoupler in mutant mitochondria lacking an intrinsic ATPase inhibitor in yeast. J Biol Chem 265: 6274–6278

    CAS  Google Scholar 

  • Ihara K, Mukohata Y (1991) The ATP synthase of Halobacteriutn salinarium (halobium) is an archaebacterial type as revealed from the amino acid sequences of its two major subunits. Arch Biochem Biophys 286: 111–116

    Article  PubMed  CAS  Google Scholar 

  • lnatomi K-I, Eya S, Maeda M. Futai M (1989) Amino acid sequence of the a and ß subunits of Methanosarcina barkeri ATPase deduced from cloned genes. Similarity to subunits of cukaryotic vacuolar and F„F,-A“l’Pases. J Biol Chem 264: 10954–10959

    Google Scholar 

  • Jackl G, Sebald W (1975) Identification of two products of mitochondrial protein synthesis associated with mitochondrial adenosine triphosphatase from Neurospora crassa. Eur J Biochem 54: 97–106

    Article  PubMed  CAS  Google Scholar 

  • Jounouchi M, Takeyama M, Noumi T, Moriyama Y. Maeda M, Futai M (1992) Role of the amino terminal region of the e subunit of Escherichia coli H’-ATPase ( F„F,). Arch Biochem Biophys 292: 87–94

    Google Scholar 

  • Kane PM (1995) Disassembly and reassembly of the yeast vacuolar HT-ATPase in vivo. J Biol Chem 270: 17025–17032

    PubMed  CAS  Google Scholar 

  • Kane PM, Yamashiro CT, Stevens TH (1989) Biochemical characterization of the yeast vacuolar H-ATPase. J Biol Chem 264: 19236–19244

    PubMed  CAS  Google Scholar 

  • Kane PM, Yamashiro CT, Wolczyk DF, Neff N, Goebl M, Stevens “1H (1990) Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H’-adenosine triphosphatase. Science 250: 651–657

    Google Scholar 

  • Kane PM, Kuehn MC, Howald-Stevenson I, Stevens TH (1992) Assembly and targeting of peripheral and integral membrane subunits of the yeast vacuolar H*-ATPase. J Biol Chem 267: 447–454

    PubMed  CAS  Google Scholar 

  • Kasho V, Boyer PD (1989) Vacuolar ATPases, like F,F„ATPases, show a strong dependence of the reaction velocity on the binding of more than one ATP per enzyme. Proc Natl Acad Sci USA 86: 8708–8711

    Article  PubMed  CAS  Google Scholar 

  • Kibak H, Taiz L, Starke T, Bernasconi P, Gogarten JP (1992) Evolution of structure and function of VATPases. J Bioenerg Biomembr 24: 415–424

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ, Herman PK, Emr SD (1990) The fungal vacuole: composition, function, and biogenesis. Microbiol Rev 54: 266–292

    PubMed  CAS  Google Scholar 

  • Kuki M, Noumi T, Maeda M, Amemura A, Futai M (1988) Functional domains of e subunit of Escherichia coli F1*- ATPase. J Biol Chem 263: 17437–17442

    PubMed  CAS  Google Scholar 

  • Lebowitz MS, Pedersen PL (1993) Regulation of the mitochondrial ATP synthase/ATPase complex: eDNA cloning, sequence, overexpression, and secondary structural characterization of a functional protein inhibitor. Arch Biochem Biophys 301: 64–70

    Article  PubMed  CAS  Google Scholar 

  • Macino G, Tzagoloff A (1979) Assembly of the mitochondrial membrane system. The DNA sequence of a mitochondrial ATPase gene in Saccharomyces cerevisiae. J Biol Chem 254: 4617–4623

    PubMed  CAS  Google Scholar 

  • Macino G, Tzagoloff A (1980) Assembly of the mitochondrial membrane system: sequence analysis of a yeast mitochondrial ATPase gene containing the oh-2 and oh-4 loci. Cell 20: 507–517

    Article  PubMed  CAS  Google Scholar 

  • Macreadie IG, Novitski CE, Maxwell RJ, John U, Ooi BG, McMullen GL, Lukins HB, Linnane AW, Nagley P (1983) Biogenesis of mitochondria: the mitochondrial gene (appl) coding for mitochondrial ATPase subunit 8 in Saccharomyces cerevisiae. Nucl Acids Res 11: 4435–4451

    Article  PubMed  CAS  Google Scholar 

  • Mainzer SE, Slayman CW (1978) Mitochondrial adenosine triphosphatase of wild-type and poky Neurospora crassa. J Bacteriol 133: 584–592

    PubMed  CAS  Google Scholar 

  • Mandel M, Moriyama Y, Hulmes JD, Pan Y-CE, Nelson H, Nelson N (1988) eDNA sequence encoding the 16-kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H*-ATPases. Proc Natl Acad Sci USA 85: 5521–5524

    Google Scholar 

  • Manolson MF, Protean D, Preston RA, Stenbit A, Roberts BT, Hoyt MA, Preuss D, Mulholland J, Botstein D, Jones EW (1992) The VPH1 gene encodes a 95-kDa integral membrane polypeptide required for in vivo assembly and activity of the yeast vacuolar H*-ATPase. J Biol Chem 267: 14294–14303

    PubMed  CAS  Google Scholar 

  • Manolson MF, Wu B, Proteau D, Taillon BE, Roberts BT, Hoyt MA, Jones EW (1994) STVI gene encodes functional homologue of 95-kDa yeast vacuolar H*ATPase subunit Vph 1 p. J Biol Chem 269:14064–14074

    Google Scholar 

  • Mattoon JR, Balcavage WX (1967) Yeast mitochondria and submitochondrial particles. Methods Enzymol 10: 135–142

    Article  CAS  Google Scholar 

  • Minhon T, Galante M. Velours J (1988) NH2-terminal sequence of the isolated yeast ATP synthase subunit 6 reveals post-translational cleavage. Eur J Biochem 172: 621–625

    Article  Google Scholar 

  • Mimura H, Hashimoto T, Yoshida Y, Ichikawa N, Tagawa K (1993) Binding of an intrinsic ATPase inhibitor to the interface between a-and ß-subunits of F,F„ ATPase upon de-energization of mitochondria. J Biochem 113: 350–354

    PubMed  CAS  Google Scholar 

  • Moriyama M, Nelson N (1989) Cold inactivation of vacuolar proton-ATPases. J Biol Chem 264: 3577–3582

    PubMed  CAS  Google Scholar 

  • Mueller DM (1988) Arginine 328 of the ß-subunit of the mitochondrial ATPase in yeast is essential for protein stability. J Biol Chem 263: 5634–5639

    PubMed  CAS  Google Scholar 

  • Mueller DM (1989) A mutation altering the kinetic responses of the yeast mitochondrial F1-ATPase. J Biol Chem 264: 16552–16556

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay A, Zhou X-q, Uh M, Mueller DM (1992) Heterologous expression, purification, and biochemistry of the oligomycin sensitivity conferring protein ( OSCP) from yeast. J Biol Chem 267: 25690–25696

    Google Scholar 

  • Nagley P (1988) Eukaryote membrane genetics: the F„ sector of mitochondrial ATP synthase. Trends Genet 4: 46–52

    Article  PubMed  CAS  Google Scholar 

  • Negrin RS, Foster DL, Fillingame RH (1980) Energytransducing H*-ATPase of Escherichia coll. Reconstitution of proton translocation activity of the intrinsic membrane sector. J Biol Chem 255: 5643–5648

    Google Scholar 

  • Nelson H, Nelson N (1989) The progenitor of ATP synthases was closely related to the current vacuolar H’ATPases. FEBS Lett 247: 147–153

    Article  PubMed  CAS  Google Scholar 

  • Nelson H, Nelson N (1990) Disruption of genes encoding subunits of yeast vacuolar H*-ATPase causes conditional lethality. Proc Natl Acad Sci USA 87: 3503–3507

    Article  PubMed  CAS  Google Scholar 

  • Nelson H, Mandiyan S, Nelson N (1989) A conserved gene encoding the 57-kDa subunit of the yeast vacuolar H’ATPase. J Biol Chem 264: 1775–1778

    PubMed  CAS  Google Scholar 

  • Nelson H, Mandiyan S, Noumi T, Moriyama Y, Miedel MC, Nelson N (1990) Molecular cloning of eDNA encoding the C subunit of H’-ATPase from bovine chromaffin granules. J Biol Chem 265: 20390–20393

    PubMed  CAS  Google Scholar 

  • Nelson H, Mandiyan S, Nelson N (1994) The Saccharomyces cerevisiae VMA7 gene encodes a 14-kDa subunit of the vacuolar H*-ATPase catalytic sector. J Biol Chem 269: 24150–24155

    PubMed  CAS  Google Scholar 

  • Nelson H, Mandiyan S, Nelson N (1995) A bovine eDNA and a yeast gene (VMA8) encoding the subunit D of the vacuolar H’-ATPase. J Biol Chem 270: 497–501

    Google Scholar 

  • Norais N, Promé D, Velours J (1991) ATP synthase of yeast mitochondria. Characterization of subunit d and sequence analysis of the structural gene ATP7. J Biol Chem 266: 16541–16549

    PubMed  CAS  Google Scholar 

  • Noumi T, Beltran C, Nelson H, Nelson N (1991) Mutational analysis of yeast vacuolar H*-ATPase. Proc Natl Acad Sci USA 88: 1938–1942

    Article  PubMed  CAS  Google Scholar 

  • Ohya Y, Umemoto N, Tanida I, Ohta A, lida H, Anraku Y (1991) Calcium-sensitive cis mutants of Saccharomyces cerevisiae showing a pet-phenotype are ascribable to defects of vacuolar membrane H*-ATPase activity. J Biol Chem 266: 13971–13977

    PubMed  CAS  Google Scholar 

  • Okamoto H, Sone N, Hirata H, Yoshida M, Kagawa Y (1977) Purified proton conductor in proton translocating adenosine triphosphatase of a thermophilic bacterium. J Biol Chem 252: 6125–6131

    PubMed  CAS  Google Scholar 

  • Parry RV, Turner JC, Rea PA (1989) High purity preparations of higher plant vacuolar H*-ATPase reveal additional subunits. Revised subunit composition. J Biol Chem 264: 20025–20032

    Google Scholar 

  • Penefsky HS, Cross RL (1991) Structure and mechanism of F„F,-type ATP synthases and ATPases. In: Meister A (ed) Advances in enzymology and related areas of molecular biology, vol 64. Wiley, New York, pp 173–214

    Google Scholar 

  • Perin MS, Fried VA, Stone DK, Xie X-S, Südhof TC (1991) Structure of the 1 16-kDa polypeptide of the clathrin-coated vesicle/synaptic vesicle proton pump. J Biol Chem 266: 3877–3881

    PubMed  CAS  Google Scholar 

  • Preston RA, Reinagel PS, Jones EW (1992) Genes required for vacuolar acidity in Saccharomyces cerevisiae. Genetics 131: 551–558

    PubMed  CAS  Google Scholar 

  • Puopolo K, Kumamoto C, Adachi I, Forgac M (1991) A single gene encodes the catalytic “A” subunit of the bovine vacuolar H*-ATPase. J Biol Chem 266: 24564–24572

    PubMed  CAS  Google Scholar 

  • Ray MK, Connerton IF, Griffiths DE (1988) DNA sequence analysis of the Oli’2–76 and Oss’1–92 alleles of the Oli-2 region of the yeast Saccharomyces cerevisiae. Analysis of related amino-acid substitutions and protein-antibiotic interaction. Biochim Biophys Acta 951: 213–219

    Google Scholar 

  • Recipon H, Perasso R, Adoutte A, Quetier F (1992) ATP synthase subunit c/III/9 gene sequences as a tool for interkingdom and metaphytes molecular phylogenies. J Mol Evol 34: 292–303

    Article  PubMed  CAS  Google Scholar 

  • Richter ML, Snyder B, McCarty RE, Hammes GG (1985) Binding stoichiometry and structural mapping of the e polypeptide of chloroplast coupling factor 1. Biochemistry 24: 5755–5763

    Article  PubMed  CAS  Google Scholar 

  • Ridder R, Künkele K-P, Osiewacz HD (1991) Sequence of the nuclear ATP synthase subunit 9 gene of Podospora anserina: lack of similarity to the mitochondrial genome. Curr Genet 20: 349–351

    Article  PubMed  CAS  Google Scholar 

  • Ryrie IJ (1977) The yeast mitochondrial adenosine triphosphatase complex. Purification, subunit composition, and some effects of protease inhibitors. Arch Biochem Biophys 184: 464–475

    Article  PubMed  CAS  Google Scholar 

  • Ryrie IJ, Gallagher A (1979) The yeast mitochondrial ATPase complex. Subunit composition and evidence for a latent protease contaminant. Biochim Biophys Acta 545: 1–14

    Google Scholar 

  • Schneider E, Altendorf K (1987) Bacterial adenosine 5’-triphosphate synthase (F,F0): purification and reconstitution of F() complexes and biochemical and functional characterization of their subunits. Microbiol Rev 51: 477–497

    PubMed  CAS  Google Scholar 

  • Schwerzmann K, Pedersen PL (1986) Regulation of the mitochondrial ATP synthase/ATPase complex. Arch Biochem Biophys 250: 1–18

    Article  PubMed  CAS  Google Scholar 

  • Sebald W, Wild G (1979) Mitochondria] ATPase complex from Neurospora crassa. Methods Enzymol 55: 344–351

    Article  PubMed  CAS  Google Scholar 

  • Sebald W, Hoppe J (1981) On the structure and genetics of the proteolipid subunit of the ATP synthase complex. Curr Top Bioenerg 12: 1–64

    CAS  Google Scholar 

  • Sebald W, Kruse B (1984) Nucleotide sequences of the nuclear genes for the proteolipid and delta subunit of the mitochondrial ATP synthase from Neurospora crassa. In: Papa S, Altendorf K, Ernster L, Packer L (eds) H’ATPase (ATP synthase): structure, function, biogenesis. The F0F, complex of coupling membranes. Adriatica Editrice, Bari, pp 67–75

    Google Scholar 

  • Sebald W, Wachter E, Tzagoloff A (1979) Identification of amino acid substitutions in the dicyclohexylcarbodiimide-binding subunit of the mitochondrial ATPase complex from oligomycin-resistant mutants of Saccharomyces cerevisiae. Eur J Biochem 100: 599–607

    Article  PubMed  CAS  Google Scholar 

  • Senior AE (1990) The proton-translocating ATPase of Escherichia coll. Annu Rev Biophys Chem 19: 7–41

    Article  CAS  Google Scholar 

  • Shih C-K, Wagner R, Feinstein S, Kanik-Ennulat C, Neff N (1988) A dominant trifluoperazine resistance gene from Saccharomyces cerevisiae has homology with FoF, ATP synthase and confers calcium-sensitive growth. Mol Cell Biol 8: 3094–3103

    Google Scholar 

  • Sista H, Wechser M, Bowman BJ (1994) The proteolipid subunit of the Neurospora crassa vacuolar ATPase: isolation of the protein and the vma-3 gene. Mol Gen Genet 243: 82–90

    Article  PubMed  CAS  Google Scholar 

  • Smith TL (1989) Disparate evolution of yeasts and filamentous fungi indicated by phylogenetic analysis of glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci USA 86: 7063–7066

    Article  PubMed  CAS  Google Scholar 

  • Snyder B, Hammes GG (1985) Structural organization of chloroplast coupling factor. Biochemistry 24: 2324–2331

    Article  PubMed  CAS  Google Scholar 

  • Stephenson G, Marzuki S, Linnane AW (1981) Defective assembly of the proteolipid into the mitochondrial adenosine triphosphatase complex in an oli2 mir mutant of Saccharomyces cerevisiae. Biochim Biophys Acta 636: 104–112

    Article  PubMed  CAS  Google Scholar 

  • Südhof TC, Fried VA, Stone DK, Johnston PA, Xie X-S (1989) Human endomembrane H+ pump strongly resembles the ATP-synthetase of archaebacteria. Proc Natl Acad Sci USA 86: 6067–6071

    Article  PubMed  Google Scholar 

  • Sumner J-P, Dow JAT, Earley FGP, Klein U. Jäger D, Wieczorek H (1995) Regulation of plasma membrane VATPase activity by dissociation of peripheral subunits. J Biol Chem 270: 5649–5663

    CAS  Google Scholar 

  • Supek F, Supekova L, Nelson N (1994) Features of vacuolar FL-ATPase revealed by yeast suppressor mutants. J Biol Chem 269: 26479–26485

    PubMed  CAS  Google Scholar 

  • Supekova L, Supek F, Nelson N (1995) The Saccharomyces cerevisiae VMA 10 is an intron-containing gene encoding a novel 13-kDa subunit of vacuolar H-ATPase. J Biol Chem 270: 13726–13732

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Nelson H, Maggert K, Morgan L, Yatabe B, Taiz SL, Rubinstein B, Nelson N (1994) Functional analysis of conserved cysteine residues in the catalytic subunit of the yeast vacuolar H*-ATPase. Biochim Biophys Acta 1194: 329–334

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Vassarotti A, Douglas MG (1985) Nuclear genes coding the yeast mitochondrial adenosine triphosphatase complex. Primary sequence analysis of ATP2 encoding the F,-ATPase 0-subunit precursor. J Biol Chem 260: 15458–15465

    PubMed  CAS  Google Scholar 

  • Takeda M, Chen W-J, Saltzgaber J, Douglas MG (1986) Nuclear genes encoding the yeast mitochondrial ATPase complex. Analysis of ATPI coding the F,ATPase a-subunit and its assembly. J Biol Chem 261: 15126–15133

    PubMed  CAS  Google Scholar 

  • Todd RD, Douglas MG (1983) Presence and stoichiometry of two forms of subunit 6 of the mitochondrial ATPase complex of yeast. Arch Biochem Biophys 227: 106–110

    Article  PubMed  CAS  Google Scholar 

  • Toyama R, Goldstein DJ, Schlegel R, Dhar R (1991) A genomic sequence of the Schizosaccharomyces pombe 16 kDa vacuolar H*-ATPase. Yeast 7: 989–991

    Article  PubMed  CAS  Google Scholar 

  • Tzagoloff A (1970) Assembly of the mitochondrial membrane system. Ill. Function and synthesis of the oligomycin sensitivity-conferring protein of yeast mitochondria. J Biol Chem 245: 1541–1551

    Google Scholar 

  • Tzagoloff A (1979) Oligomycin-sensitive ATPase of Saccharomyces cerevisiae. Methods Enzymol 55: 351–358

    Article  PubMed  CAS  Google Scholar 

  • Uchida E, Ohsumi Y, Anraku Y (1985) Purification and properties of 1*-translocating, Mg’’’-adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 260: 1090–1095

    PubMed  CAS  Google Scholar 

  • Uchida E, Ohsumi Y, Anraku Y (1988) Characterization and function of catalytic subunit a of H*-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. A study with 7-chloro-4nitrobenzo-2-oxa-13-diazole. J Biol Chem 263: 45–52

    PubMed  CAS  Google Scholar 

  • Uh M, Jones D, Mueller DM (1990) The gene coding for the yeast oligomycin sensitivity-conferring protein. J Biol Chem 265: 19047–19052

    PubMed  CAS  Google Scholar 

  • Umemoto N, Yoshihisa T, Hirata R, Anraku Y (1990) Roles of the VMA3 gene product, subunit c of the vacuolar membrane H’-ATPase on vacuolar acidification and protein transport. A study with VMA3-disrupted mutants of Saccharomyces cerevisiae. J Biol Chem 265: 18447–18453

    PubMed  CAS  Google Scholar 

  • Umemoto N, Ohya Y, Anraku Y (1991) VMAII, a novel gene that encodes a putative proteolipid, is indispensable for expression of yeast vacuolar membrane H’ATPase activity. J Biol Chem 266: 24526–24532

    Google Scholar 

  • Van den Boogaart P, Samallo J, Agsteribbe E (1982) Similar genes for a mitochondrial ATPase subunit in the nuclear and mitochondrial genomes of Neurospora crassa. Nature 298: 187–189

    Article  PubMed  Google Scholar 

  • Velours J, Esparza M, Hoppe J, Sebald W, Guerin B (1984) Amino acid sequence of a new mitochondrially synthesized proteolipid of the ATP synthase of Saccharomyces cerevisiae. EMBO J 3: 207–212

    PubMed  CAS  Google Scholar 

  • Velours J, Durrens P, Aigle M, Guérin B (1988) ATP4, the structural gene for yeast F„F, subunit 4. Eur J Biochem 170: 637–642

    Google Scholar 

  • Viebrock A, Perz A, Sebald W (1982) The imported preprotein of the proteolipid subunit of the mitochondrial ATP synthase from Neurospora crassa. Molecular cloning and sequencing of the mRNA. EMBO J 1: 565–571

    Google Scholar 

  • Walker JE, Runswick MJ (1987) ATP synthase from bovine mitochondria. The characterization and sequence analysis of two membrane-associated sub-units and of the corresponding cDNAs. J Mol Biol 197: 89–100

    Google Scholar 

  • Walker JE, Fearnley IM, Lutter R, Todd RJ, Runswick MJ (1990) Structural aspects of proton-pumping ATPases. Phil Trans R Soc Lond B 326: 367–378

    Article  CAS  Google Scholar 

  • Walker JE, Lutter R, Dupuis A, Runswick MJ (1991) Identification of the subunits of F,Fo ATPase from bovine heart mitochondria. Biochemistry 30: 5369–5378

    Article  PubMed  CAS  Google Scholar 

  • Wang S-Y, Moriyama Y, Mandel M, Hulmes JD, Pan Y-CE, Danho W, Nelson H, Nelson N (1988) Cloning of cDNA encoding a 32-kDa protein. An accessory polypeptide of the H’-ATPase from chromaffin granules. J Biol Chem 263: 17638–17642

    Google Scholar 

  • Ward M, Turner G (1986) The ATP synthase subunit 9 gene of Aspergillus nidulans: sequence and transcription. Mol Gen Genet 205: 331–338

    Article  PubMed  CAS  Google Scholar 

  • Wieczorek H (1992) The insect V-ATPase, a plasma membrane proton pump energizing secondary active transport: molecular analysis of electrogenic potassium transport in the tobacco hornworm midgut. J Exp Biol 172: 335–343

    PubMed  CAS  Google Scholar 

  • Yamashiro CT, Kane PM, Wolczyk DF, Preston RA, Stevens TH (1990) Role of vacuolar acidification in protein sorting and zymogen activation: a genetic analysis of the yeast vacuolar proton-translocating ATPase. Mol Cell Biol 10: 3737–3749

    PubMed  CAS  Google Scholar 

  • Yoshida Y, Sato T, Hashimoto T, Ichikawa N, Nakai S, Yoshikawa H, Imamoto F, Tagawa K (1990) Isolation of a gene for a regulatory 15-kDa subunit of mitochondrial F,F„-ATPase and construction of mutant yeast lacking the protein. Eur J Biochem 192: 49–53

    Article  PubMed  CAS  Google Scholar 

  • Ysern X, Amzel LM, Pedersen PL (1988) ATP synthases — structure of the F,-moiety and its relationship to function and mechanism. J Bioenerg Biomembr 20: 423–450

    Article  PubMed  CAS  Google Scholar 

  • Yuan H, Douglas MG (1992) The mitochondrial F, ATPase a-subunit is necessary for efficient import of mitochondrial precursors. J Biol Chem 267: 14697–14702

    Google Scholar 

  • Zhang J, Myers M, Forgac M (1992) Characterization of the V„ domain of the coated vesicle ( H’)-ATPase. J Biol Chem 267: 9773–9778

    Google Scholar 

  • Zhuo S, Garrod S, Miller P, Allison WS (1992) Irradiation of the bovine mitochondrial F,-ATPase previously inactivated with 5’-p-fluorosulfonylbenzoyl-8-azido[;H]adenosine cross-links His-/3427 to Tyr-ß345 within the same ß subunit. J Biol Chem 267: 12916–12927

    PubMed  CAS  Google Scholar 

  • Zimniak L, Dittrich P, Gogarten JP, Kibak H, Taiz L (1988) The cDNA sequence of the 69-kDa subunit of the carrot vacuolar H’-ATPase. Homology to the /3-chain of F„F,-ATPases. J Biol Chem 263: 9102–9112

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bowman, B.J., Bowman, E.J. (1996). Mitochondrial and Vacuolar ATPases. In: Brambl, R., Marzluf, G.A. (eds) Biochemistry and Molecular Biology. The Mycota, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10367-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10367-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10369-2

  • Online ISBN: 978-3-662-10367-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics