Skip to main content

Microbial Succession During Composting of Source-Separated Urban Organic Household Waste Under Different Initial Temperature Conditions

  • Conference paper
Microbiology of Composting

Abstract

The effects of initial temperature regime on microbial community succession during controlled composting of organic household waste in a laboratory reactor was determined by analysis of phospholipid fatty acids (PLFAs). Spontaneous self-heating of the substrate led to substantial microbial biomass increase (maximum PLFA concentration of 2000 nmol g−1 d.w.) and high CO2 production in the thermophilic phase (regulated at 55 °C). In contrast, when the initial period of temperature increase was shortened by external heating, there was a negligible increase in biomass and only a small increase in CO2 production. Thus, attempts to speed up the process initially by external heating are not advisable. The increase in PLFA concentration under self-heating conditions occurred mainly in iso- and anteiso-branched fatty acids (more than 100-fold increase, their maximum corresponding roughly to 1011 bacterial cells g−1 d.w.) from different types of thermophilic bacteria. One PLFA typical of actinomycetes (10Me 18:0) had a low initial concentration, but started to increase during the thermophilic phase. The abundance of polyunsaturated PLFAs generally decreased during composting, indicating no growth of eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkinson CF, Jones DD, Gauthier JJ (1996) Putative anaerobic activity in aerated composts. J Ind Microbiol 16: 182 - 188

    Article  CAS  Google Scholar 

  • Barth J, Kroeger B (1998) Composting progress in Europe. BioCycle April 1998: 65 - 68

    Google Scholar 

  • Beck-Friis B, Smârs S, Jönsson H, Kirchmann H (2001) Emissions of CO2, NH3 and N20

    Google Scholar 

  • from organic household waste in a compost reactor under different temperature regimes. J Agr Eng Res 78:423-430

    Google Scholar 

  • Beffa T, Blanc M, Lyon P-F, Vogt G, Marchiani M, Lott Fischer J, Aragno M (1996) Isolation of Thermus strains from hot composts (60 to 80 °C). Appl Environ Microbiol 62: 1723 - 1727

    PubMed  CAS  Google Scholar 

  • Bergey’s Manual of Systematic Bacteriology (1984) Williams & Wilkins, Baltimore

    Google Scholar 

  • Blanc M, Marilley L, Beffa T, Aragno M (1997) Rapid identification of heterotrophic,

    Google Scholar 

  • thermophilic, spore-forming bacteria isolated from hot composts. Int J Syst Bacteriol 47:1246-1248

    Google Scholar 

  • Carpenter-Boggs L, Kennedy AC, Reganold JP (1998) Use of phospholipid fatty acids and carbon source utilization patterns to track microbial community succession in developing compost. Appl Environ Microbiol 64: 4062 - 4064

    PubMed  CAS  Google Scholar 

  • Davis CL, Hinch SA, Donkin CJ, Germishuizen PJ (1992) Changes in microbial population numbers during the composting of pine bark. Biores Technol 39: 85 - 92

    Article  CAS  Google Scholar 

  • de Bertoldi M (1998) Composting in the European Union. BioCycle June 1998: 74 - 75

    Google Scholar 

  • de Bertoldi M, Vallini G, Pera A (1983) The biology of composting: a review. Waste Manage Res 1: 157 - 176

    Google Scholar 

  • Eklind Y, Beck-Fri is B, Bengtsson S, Ejlertsson J, Kirchmann H, Mathisen B, Nordkvist E, Sonesson U, Svensson BH, Torstensson L (1997) Chemical characterization of source-separated organic household wastes. Swed J Agric Res 27: 167 - 178

    CAS  Google Scholar 

  • Fermor TR, Smith JF, Spencer DM (1979) The microflora of experimental mushroom composts. J Hortic Sci 54: 137 - 147

    Google Scholar 

  • Finstein MS, Morris ML (1975) Microbiology of solid waste composting. Adv Appl Microbiol 19: 113 - 151

    Article  PubMed  CAS  Google Scholar 

  • Hellmann B, Zelles L, Palojärvi A, Bai Q (1997) Emission of climate-relevant trace gases and succession of microbial communities during open-windrow composting. Appl Environ Microbiol 63: 1011 - 1018

    PubMed  CAS  Google Scholar 

  • Herrmann RF, Shann JF (1997) Microbial community changes during the composting of municipal solid waste. Microb Ecol 33: 78 - 85

    Article  PubMed  Google Scholar 

  • Hue NV, Liu J (1995) Predicting compost stability. Compost Sci Util 3: 8 - 15

    Google Scholar 

  • Klamer M, Bââth E (1998) Microbial community dynamics during composting of straw material studied using phospholipid fatty acid analysis. FEMS Microbiol Ecol 27: 9 - 20

    Article  CAS  Google Scholar 

  • Koschinsky S, Schwieger F, Peters S, Grabbe K, Tebbe CC (1998) Characterizing microbial communities of composts at the DNA level. Med Fac Landbouww Univ Gent 63 /4: 1725 - 1732

    CAS  Google Scholar 

  • Kowalchuk GA, Naoumenko ZS, Derikx PJL, Felske A, Stephen JR, Arkhipchenko IA (1999) Molecular analysis of ammonia-oxidizing bacteria of the ß subdivision of the class Proteobacteria in compost and composted materials. Appl Environ Microbiol 65: 396 - 403

    PubMed  CAS  Google Scholar 

  • Lechevalier H, Lechevalier MP (1988) Chemotaxonomic use of lipids — an overview. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic Press, London, pp 869 - 902

    Google Scholar 

  • Mathur SP, Owen G, Dinel H, Schnitzer M (1993) Determination of compost biomaturity. I. Literature review. Biol Agric Hortic 10: 65-85

    Google Scholar 

  • Miller FC (1993) Composting as a process based on the control of ecologically selective factors. In: Metting FB Jr (ed) Soil microbial ecology — applications in agricultural and environmental management. Marcel Dekker, New York, pp 515 - 544

    Google Scholar 

  • Nordström KM (1992) Effect of growth phase on the fatty acid composition of Thermus spp. Arch Microbiol 158: 452 - 455

    Article  Google Scholar 

  • Norland S, Heldal M, Tumyr O (1987) On the relation between dry matter and volume of bacteria. Microb Ecol 13: 95 - 101

    Article  Google Scholar 

  • O’Leary WM, Wilkinson SG (1988) Gram-positive bacteria. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic Press, London, pp 117 - 202

    Google Scholar 

  • Peters S, Koschinsky S, Schwieger F, Tebbe CC (2000) Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Appl Environ Microbiol 66: 930 - 936

    Article  PubMed  CAS  Google Scholar 

  • Smârs S, Beck-Friis B, Jönsson H, Kirchmann H (2001) An advanced experimental composting reactor for systematic simulation studies. J Agr Eng Res 78: 415 - 422

    Article  Google Scholar 

  • Strom PF (1985a) Effect of temperature on bacterial species diversity in thermophilic solidwaste composting. Appl Environ Microbiol 50: 899 - 905

    PubMed  CAS  Google Scholar 

  • Strom PF (1985b) Identification of thermophilic bacteria in solid-waste composting. Appl Environ Microbiol 50: 906 - 913

    PubMed  CAS  Google Scholar 

  • Sundh I, Borgâ P, Nilsson M, Svensson BH (1995) Estimation of cell numbers of methanotrophic bacteria in boreal peatlands based on analysis of specific phospholipid fatty acids. FEMS Microbiol Ecol 18: 103 - 112

    Article  CAS  Google Scholar 

  • Tam NFY (1995) Changes in microbiological properties during in-situ composting of pig manure. Environ Technol 16: 445 - 456

    Article  CAS  Google Scholar 

  • Vestal JR, White DC (1989) Lipid analysis in microbial ecology. BioScience 39: 535 - 541

    Article  PubMed  CAS  Google Scholar 

  • Virtue P, Nichols PD, Boon PI (1996) Simultaneous estimation of microbial phospholipid fatty acids and diether lipids by capillary gas chromatography. J Microbiol Methods 25: 177 - 185

    Article  CAS  Google Scholar 

  • Vuorinen AH, Saharinen MH (1997) Evolution of microbiological and chemical parameters during manure and straw co-composting in a drum composting system. Agric Ecosyst Environ 66: 19 - 29

    Article  Google Scholar 

  • White DC, Bobbie RJ, Herron JS, King JD, Morrison SJ (1979) Biochemical measurements of microbial mass and activity from environmental samples. In: Costerton JW, Colwell RR (eds) Native aquatic bacteria: enumeration, activity, and ecology, ASTM STP 695. American Society for Testing and Materials, Philadelphia, PA, pp 69 - 81

    Chapter  Google Scholar 

  • White DC, Stair JO, Ringelberg DB (1996) Quantitative comparisons of in situ microbial biodiversity by signature biomarker analysis. J Ind Microbiol 17: 185 - 196

    Article  CAS  Google Scholar 

  • Wilkinson SG (1988) Gram-negative bacteria. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic Press, London, pp 299 - 488

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sundh, I., Rönn, S. (2002). Microbial Succession During Composting of Source-Separated Urban Organic Household Waste Under Different Initial Temperature Conditions. In: Insam, H., Riddech, N., Klammer, S. (eds) Microbiology of Composting. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08724-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08724-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08705-9

  • Online ISBN: 978-3-662-08724-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics