Skip to main content

Mathematical Models of Carcinogenesis

  • Chapter
Low Dose Exposures in the Environment

Abstract

As discussed in chapters 3 and 4, the process of carcinogenesis is very complex. It is too complex to be described in full detail by a mathematical model. Therefore, modelling carcinogenesis implies simplifications that try to identify the most important features of the process. Resulting predictions can be tested in laboratory experiments with carcinogens or by analyses of epidemiological cohorts. Compared to conventional risk models used in epidemiology, as, e. g, the excess relative risk model, mathematical models of carcinogenesis have the advantage of a straightforward description of complex exposure scenarios. After identification of the action of a carcinogen on the parameters of the model, no additional parameters are necessary to calculate the effects of exposures that may change many times over lifetime or differ for the various members of the study cohort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaltonen LA, Peltomäki P, Leach FS, Sistonen P, Pylkkänen L, Mecklin JP, Järvinen H, Powell SM, Jen J, Hamilton SR, Peterson GM, Kinzler KW, Vogelstein B, de la Chapelle A (1993) Clue to the pathogenesis of familiar colorectal cancer. Science 260: 812–816

    Article  Google Scholar 

  • Armitage P, Doll R (1954) The age distribution of cancer and multistage theory of carcinogenesis. Br J Cancer 8: 1–12

    Article  Google Scholar 

  • Armitage P, Doll R (1957) The two-stage theory of carcinogenesis in relation to the age distribution of human cancers. Br J Cancer 11: 161–169

    Article  Google Scholar 

  • Beck-Bornholdt HP, Maurer T, Becker S, Vogler H, Würschmidt F (1989) Radiotherapy of the rhadomyosarcoma R1H of the rat: hyperfractionation — 126 fractions applied within 6 weeks. Int J Radiat Oncol 16: 701–705

    Article  Google Scholar 

  • Bishop JM (1991) Molecular themes in oncogenesis. Cell 64: 235–248

    Article  Google Scholar 

  • Cross FT, Buschbom RL, Dagle E, Gideon KM, Gries RA (1993) Radon hazards in homes. In: Annual Report for 1992 to the DOE Office of Energy Research. Pacific Northwest Laboratory, Richland, WA, pp 31–37

    Google Scholar 

  • Dragan YP, Xu X, Goldsworthy TL, Campbell HA, Maronpot RR, Pilot HC (1002) Characterization of promotion of altered hepatic foci by 2,3,7,8-tetrachloodibenzo-p-dioxin in the female rat. Carcinogenesis 13: 1389–1395

    Article  Google Scholar 

  • Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61: 759–767

    Article  Google Scholar 

  • Gannon JV, Greaves R, Iggo R, Lane DP (1990) Activating mutations in p53 produce a common conformational effect: a monoclonal antibody specific for the mutant form. EMBO J. 9: 1595–1602

    Google Scholar 

  • Grasl-Kraupp B, Luebeck G, Wagner A, Löw-Baselli A, de Gunst M, Waldhör T, Moolgavkar S, Schulte-Hermann R (2000) Quantitative analysis of tumOr initiation in rat liver: role of cell replication and cell death (apoptosis). Carcinogenesis 21: 1411–1421

    Article  Google Scholar 

  • Grasl-Kraupp B, Ruttkay-Nedecky B, Müllauer L, Taper H, Huber W, Bursch W, Schulte-Hermann R (1997) Inherent increase of apoptosis in liver tumors: implications for carcinogenesis and tumor regression. Hepatology 25: 906–911

    Article  Google Scholar 

  • Hazelton WD, Luebeck EG, Heidenreich WF, Moolgavkar SH (2001) Analysis of a historical cohort of Chinese tin miners with arsenic, radon, cigarette smoke, and pipe smoke exposure using biologically based two-stage clonal expansion model. Radiat Res 156: 78–94

    Article  Google Scholar 

  • Heidenreich WF (1996) On the parameters of the clonal expansion model. Radiat Environ Biophys 35: 127–129

    Article  Google Scholar 

  • Heidenreich WF, Atkinson M, Paretzke HG (2001) Radiation induced cell inactivation can increase the cancer risk. Radiat Res 155: 870–872

    Article  Google Scholar 

  • Heidenreich WF, Brugmans MJP, Little MP, Leenhouts HP, Paretzke HG, Morin M, Lafuma J (2000) Analysis of lung tumour risk in radon-exposed rats: an intercomparison of multistep modelling. Radiat Environ Biophys 39: 253–264

    Article  Google Scholar 

  • Heidenreich WF, Jacob P, Paretzke HG (1997a) Exact solutions of the clonal expansion model and their application to the incidence of solid tumors of the atomic bomb survivors. Radiat Environ Biophys 36: 45–58

    Article  Google Scholar 

  • Heidenreich WF, Jacob P, Paretzke HG, Cross FT, Dagle GE (1999) Two-step model for the risk of fatal and incidental lung tumors in rats exposed to radon. Radiat Res 151: 209–217

    Article  Google Scholar 

  • Heidenreich WF, Luebeck EG, Hazelton WD, Paretzke HG, Moolgavkar SH (2002) Multistage models and the incidence of cancer in the cohort of A-bomb survivors. Radiat Res 158: 607–614

    Article  Google Scholar 

  • Heidenreich WF, Luebeck EG, Moolgavkar SH (1997b) Some properties of the hazard function of the two-mutation clonal expansion model. Risk Anal 17: 391–399

    Article  Google Scholar 

  • Herrero-Jimenez P, Thilly G, Southam PJ, Tomita-Mitchel A, Morgenthaler S, Furth EE, Thilly WG (1998) Mutation, cell kinetics, and subpopulations at risk for colon cancer in the United States. Mut Res 400: 553–578

    Article  Google Scholar 

  • Herrero-Jimenez P, Tomita-Mitchel A, Furth EE, Morgenthaler S, Thilly WG (2000) Population risk and physiological rate parameters for colon cancer. The union of an explicit model for carcinogenesis withthe public health records of the United States. Mut Res 447: 73–116

    Article  Google Scholar 

  • Jacob P, Prokic V (2002) Increased radioresistance, modelling of carcinogenesis and low-dose risk estimation. J Radiol Prot 22: A51–A55

    Article  Google Scholar 

  • Jacob P, Prokic V (2003) Zur Bewertung radiologischer und chemisch-toxischer Wirkungen von Umweltkontaminationen. In: Bundesministerium für Umwelt, Naturschutz und Gesundheit (ed) Aktuelle und neue Aufgaben in der Radioökologie. Urban & Fischer, München

    Google Scholar 

  • James F (1994) Minuit. Function minimization and error analysis. Reference Manual, Version 94.1. CERN Program Library Long Writeup D506. CERN, Geneva

    Google Scholar 

  • Joiner MC, Lambin P, Malaise EP, Robson T Arrand JE, Skov KA, Marples B (1996) Hypersensitivity to very low single radiation doses: Its relationship to the adaptive response and induced radioresistance. Mut Res 358: 171–183

    Article  Google Scholar 

  • Joiner MC, Marples B, Lambin P, Short SC, Turesson I (2001) Low-dose hypersensitivity: current status and possible mechanisms. Int J Radiat Oncol 49: 379–389

    Article  Google Scholar 

  • Kai M, Luebeck EG, Moolgavkar S.H. (1997) Analysis of the incidence of solid cancer among atomic bomb survivors using a two-stage model of carcinogenesis. Radiat Res 148: 348–358

    Article  Google Scholar 

  • Kellerer AM, Nekolla EA, Walsh L (2001) On the conversion of solid cancer excess relative risk into lifetime attributable risk. Radiat Environ Biophys 40: 249–257

    Article  Google Scholar 

  • Knudson AG (1971) Mutation and cancer: Statistical study of retinoblastoma. Proc Natl Acad Sci 68: 820–823

    Article  Google Scholar 

  • Kopp-Schneider A (1997) Carcinogenesis models for risk assessment, Stat Meth Med Res 6: 317–340

    Article  Google Scholar 

  • Kopp-Schneider A, Portier CJ, Sherman CD (1994) The exact formula for tumor incidence in the two-stage model. Risk Anal 14: 1079–1080

    Article  Google Scholar 

  • Little MP (1995) Are two mutations sufficient to cause cancer? Some generalizations of the two-mutation model of carcinogenesis of Moolgavkar, Venzon, and Kundson, and of the multistage model of Armitage and Doll. Biometrics 51: 1278–1291

    Article  Google Scholar 

  • Little MP (1996) Generalisations of the two-mutation and classical multistage models of carcinogenesis fitted to the Japanese atomic bomb survivor data. J Radiol Prot 16: 7–24

    Article  Google Scholar 

  • Little MP, Haylock RGE, Muirhead CR (2002) Modelling lung tumour risk in radon-exposed uranium miners using generalizations of the two-mutation model of Moolgavkar, Venzon and Knudson. Int J Radiat Biol 78: 49–68

    Article  Google Scholar 

  • Little MP, Muirhead CR, Stiller CA (1996) Modelling lymphocytic leukemia incidence in England and Wales using generalizations of the two-mutation model of carcinogenesis of Moolgavkar, Venzon and Knudson. Stat Med 15: 1003–1022

    Article  Google Scholar 

  • Luebeck EG, Buchmann A, Stinchcombe S, Moolgavkar SH, Schwarz M (2000) Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on initiation and promotion of GST-P-positive foci in rat liver: A quantitative analysis of experimental data using a stochastic model. Toxicol Appl Pharmacol 167: 63–73

    Article  Google Scholar 

  • Luebeck EG, Curtis SB, Cross FT, Moolgavkar SH (1996) Two-stage model of radon-induced malignant lung tumors in rats: Effects of cell killing. Radiat Res 145: 163–173

    Article  Google Scholar 

  • Luebeck EG, Heidenreich WF, Hazelton WD, Paretzke HG, Moolgavkar SH (1999) Biologically based analysis of the data for the Colorado uranium miners cohort: age, dose and dose-rate effect. Radiat Res 152: 339–351

    Article  Google Scholar 

  • Luebeck EG, Moolgavkar SH (2002) Multistage carcinogenesis and the incidence of colorectal cancer. PNAS 99: 15095–15100

    Article  Google Scholar 

  • Monchaux G, Morlier J, Morin M, Chameaud J, Lafuma J, Masse R (1994) Carcinogenic and cocarcinogenic effects of radon and radon daughters in rats. Environ Health Perspect 102: 64–73

    Article  Google Scholar 

  • Monchaux G, Morlier JP, Altmeyer S, Debroche M, Morin M (1999) Influence of exposure rate on lung cancer induction in rats exposed to radon progeny. Radiat Res 152: S137–S140

    Article  Google Scholar 

  • Moolgavkar S, Krewski D, Schwarz M (1999) Mechanisms of carcinogenesis and biologically based models for estimation and prediction of risk. IARC Sci Pubi 131: 179–237

    Google Scholar 

  • Moolgavkar SH (1978) The multistage theory of carcinogenesis and the age distribution of cancer in man. J Natl Cancer Inst 61: 49–52

    Google Scholar 

  • Moolgavkar SH (1997) Stochastic cancer models: Application to analyses of solid cancer incidence in the cohort of A-bomb survivors. Nucl Energy 36: 447–451

    Google Scholar 

  • Moolgavkar SH, Cross FT, Luebeck G, Dagle GE (1990) A two-mutation model for radon-induced lung tumors in rats. Radiat Res 121: 28–37

    Article  Google Scholar 

  • Moolgavkar SH, Dewanji A, Venzon DJ (1988) A stochastic two-stage model for cancer risk assessment. I. The hazard function and the probability of tumor. Risk Anal 8: 383–392

    Article  Google Scholar 

  • Moolgavkar SH, Luebeck EG, Anderson EL (1998) Estimation of unit risk for coke oven emissions. Risk Anal 18: 813–825

    Article  Google Scholar 

  • Moolgavkar SH, Luebeck EG, Buchmann A, Bock KW (1996) Quantitative analysis of enzyme-altered liver foci in rats initiated with diethylnitrosamine and promoted with 2,3,7,8-tetra-chlorodibenzo-p-dioxin or 1,2,3,43,6,7-heptachlorodibenzo-p-dioxin, Toxicol Appl Pharmacol 138:31–42

    Article  Google Scholar 

  • Moolgavkar SH, Luebeck EG, Krewski D, Zielinski JM (1993) Radon, cigarette smoke and lung cancer: A re-analysis of the Colorado Plateau uranium miners’ data. Epidemiology 4: 204–217

    Article  Google Scholar 

  • Moolgavkar SH, Luebeck G (1990) Two-event model for carcinogenesis: biological, mathematical and statistical considerations. Risk Anal 10: 323–341

    Article  Google Scholar 

  • Moolgavkar SH, Luebeck G (1992) Multistage carcinogenesis: population-based model for colon cancer. J Natl Cancer Inst 84: 610–618

    Article  Google Scholar 

  • Moolgavkar SH, Venzon DJ (1979) Two-events models for carcmogenesis: Incidence curves for childhood and adult tumors. Math Biosci 47: 55–77

    Article  Google Scholar 

  • Moore MA, Nakagawa K, Satoh K, Ishikawa T, Sato K (1987) Single GST-P positive liver cells -putative initiated hepatocytes. Carcinogenesis 8: 483–486

    Article  Google Scholar 

  • Nordling CO (1953) A new theory on the cancer-inducing mechanism. Brit J Cancer 7: 68–52

    Article  Google Scholar 

  • Peltomäki P, Aaltonen LA, Sistonen P, Pylkkänen L, Mecklin JP, Järvinen H, Green JS, Jass JR, Weber JL, Leach FS, Petersen GM, Hamilton SR, de la Chapelle A, Vogelstein B (1993) Genetic mapping of a locus predisposing to human colorectal cancer. Science 260: 810–812

    Article  Google Scholar 

  • Pierce DA, Mendelsohn ML (1999) A model for radiation-related cancer suggested by atomic bomb survivor data. Radiat Res 152: 642–654

    Article  Google Scholar 

  • Pierce DA, Shimizu Y, Preston DL, Vaeth M, Mabuchi K (1996) Studies of the mortality of atomic bomb survivors. Report 12, Part 1: 1950–1990. Radiat Res 146(1): 1–27

    Article  Google Scholar 

  • Portier CJ, Sherman CD, Kohn MC, Edler L, Kopp-Schneider A, Maronpot RR, Lucier G (1996) Modeling the number and size of hepatic focal lesions following exposure to 2,3,7,8-TCDD. Tocicol. Appl Pharmacol 138: 20–30

    Article  Google Scholar 

  • Preston D (1999) Cigarette smoking and radiation dose in the Life Span Study. RERF Update 10:9

    Google Scholar 

  • Preston D (2002) Private communication. Radiation Effects Research Foundation. Hiroshima, Japan

    Google Scholar 

  • Prokic V, Jacob P (2002) Cancer incidence and mortality among atomic bomb survivors. Threshold calculations with the TSCE model. Europäische Akademie zur Erforschung wissenschaftlich-technischer Entwicklungen. Bad-Neuenahr Ahrweiler, Germany (unpublished)

    Google Scholar 

  • Prokic V, Jacob P, Heidenreich W (2002) Possible implications of non-linear radiobiological effects for the estimation of radiation risk at low doses. Radiat Prot Dosim 99: 279–281

    Article  Google Scholar 

  • Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, Edwards BK (eds) (2001) SEER Cancer Statistics Review, 1973–1998. National Cancer Institute, Bethesda, MD

    Google Scholar 

  • Sato K (1989) Glutathione transferases as markers for preneoplasia and neoplasia. Adv Cancer Res 52: 205–255

    Article  Google Scholar 

  • Singh B, Arrand JE, Joiner MC (1994) Hypersensitive response of normal human lung epithelial cells at low radiation doses, Int J Radiat Biol 65: 457–464

    Article  Google Scholar 

  • Statistisches Bundesamt (2000) Statistisches Jahrbuch 2000 für die Bundesrepublik Deutschland. Metzler-Poeschel, Stuttgart

    Google Scholar 

  • Stinchcombe S, Buchmann A, Bock KW, Schwarz M (1995) Inhibition of apoptosis during 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated tumour promotion in rat liver. Carcinogenesis 16:1271–1275

    Article  Google Scholar 

  • Streffer C, Bücker J, Cansier A, Cansier D, Gethmann CF, Guderian R, Hanekamp G, Henschler D, Pöch G, Rehbinder E, Renn O, Slesina M, Wuttke K (2000) Umweltstandards: kombinierte Expositionen und ihre Auswirkungen auf die Umwelt. Wissenschaftsethik und Technikfolgenbeurteilung, Bd. 5. Springer, Berlin

    Google Scholar 

  • Tan WY (1991) Stochastic models of carcinogenesis. Marcel Dekker, New York

    Google Scholar 

  • Thompson DE, Mabuchi K, Ron E, Soda M, Tokunaga M, Ochikubo S, Sugimoto S, Ikeda T, Terasaki M, Izumi S, Preston DL (1994) Cancer incidence in atomic bomb survivors. Part II: Solid tumors, 1958–1987. Radiat Res 137(2 Suppl): S17–S67

    Article  Google Scholar 

  • Trosko JE, Chang CC, Medcalf A (1983) Mechanisms of tumor promotion: Potential role of intercellular communication. Cancer Invest. 1: 511–526

    Article  Google Scholar 

  • United Nations Scientific Committee on the Effects of Atomic Radiation [UNSCEAR] (2000) Report to the General Assembly, Volume II, Annex H. United Nations, New York

    Google Scholar 

  • Vaeth M, Pierce D (1990) Calculating excess lifetime risk in relative risk models. Environ Health Perspect 87: 83–94

    Article  Google Scholar 

  • Weinberg RA (1991) Tumor suppressor genes. Science 254: 1138–1146

    Article  Google Scholar 

  • Zheng Q (1994) On the exact hazard and survival functions of the MVK stochastic carcinogenesis model. Risk Anal 14: 1081–1084

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Streffer, C. et al. (2004). Mathematical Models of Carcinogenesis. In: Wütscher, F. (eds) Low Dose Exposures in the Environment. Wissenschaftsethik und Technikfolgenbeurteilung, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08422-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08422-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05923-0

  • Online ISBN: 978-3-662-08422-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics