Skip to main content

Echocardiographic Recognition of Myocardial Viability

  • Chapter
Stress Echocardiography

Abstract

When facing dangerous environmental situations, most animal species react with a sympathoadrenergic fight or flight activation; others, such as the opossum, react with a vagal sympathoinhibitory discharge, or playing dead reaction, which discourages possible predators. The myocardium reacts to dangerous situations with opossum-like behavior. In several altered myocardial states (ischemia, hibernation, stunning), when the local supply-demand balance of the cell is critically endangered, the cell minimizes expenditure of energy used for development of contractile force, accounting at rest for about 60% of the high-energy phosphates produced by cell metabolism, and utilizes whatever is left for the maintenance of cellular integrity [1]. The echocardiographic counterpart of this cellular strategic choice is the regional asynergy of viable segments. Both viable and necrotic segments show a depressed resting function [2], but the segmental dysfunction of viable regions can be transiently normalized by proper inotropic stimulus (Fig.3 of Chap. 4).

Oppressed nature sleeps.

W. Shakespeare, King Lear, Act 3, Scene VI

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Heusch G, Schulz R (2000) The biology of myocardial hibernation. Trends Cardiovasc Med 10:108–114

    Article  PubMed  CAS  Google Scholar 

  2. Vanoverschelde JL, Melin JA (2001) The pathophysiology of myocardial hibernation: current controversies and future directions. Prog Cardiovasc Dis 43:387–398

    Article  PubMed  CAS  Google Scholar 

  3. Braunwald E, Kloner RA (1982) The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 66:1146–1149

    Article  PubMed  CAS  Google Scholar 

  4. Rahimtoola SH (1985) A perspective on the three large multivessel randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 72 [Suppl V]):V123–V135

    Article  Google Scholar 

  5. Braunwald E, Rutherford JD (1986) Reversible ischemic left ventricular dysfunction: evidence for “hibernating myocardium”. J Am Coll Cardiol 56:978–985

    Google Scholar 

  6. Vanoverschelde JL, Wijns W, Borgers M, et al (1997) Chronic myocardial hibernation in humans. From bedside to bench. Circulation 95:1961–1971

    Article  PubMed  CAS  Google Scholar 

  7. Rahimtoola SH (1989) The hibernating myocardium. Am Heart J 117:211–220

    Article  PubMed  CAS  Google Scholar 

  8. Torres MA, Picano E, Parodi G, et al (1997) Residual coronary reserve identifies segmental viability in patients with wall motion abnormalities. J Am Coll Cardiol 30:65–70

    Article  PubMed  CAS  Google Scholar 

  9. Bonow RO (2002) Myocardial viability and prognosis in patients with ischemic left ventricular dysfunction. J Am Coll Cardiol 39:1159–1162

    Article  PubMed  Google Scholar 

  10. Soto JR, Beller GA (2001) Clinical benefit of noninvasive viability studies of patients with severe ischemic left ventricular dysfunction. Clin Cardiol 24:428–434

    Article  PubMed  CAS  Google Scholar 

  11. Faletra F, Crivellaro W, Pirelli S, et al (1995) Value of transthoracic two-dimensional echocardiography in predicting viability in patients with healed Q-wave anterior wall myocardial infarction. Am J Cardiol 76:1002–1006

    Article  PubMed  CAS  Google Scholar 

  12. Cwajg JM, Cwajg E, Nagueh SF, et al (2000) End-diastolic wall thickness as a predictor of recovery of function in myocardial hibernation: relation to rest-redistribution Tl-201 tomography and dobutamine stress echocardiography. J Am Coll Cardiol 35:1152–1161

    Article  PubMed  CAS  Google Scholar 

  13. Bolognese L, Antoniucci D, Rovai D, et al (1996) Myocardial contrast echocardiography versus dobutamine echocardiography for predicting functional recovery after acute myocardial infarction treated with primary coronary angioplasty. J Am Coll Cardiol 28:1677–1683

    Article  PubMed  CAS  Google Scholar 

  14. Milunski MR, Mohr GA, Perez JE, et al (1989) Ultrasonic tissue characterization with integrated backscatter. Acute myocardial ischemia, reperfusion, and stunned myocardium in patients. Circulation 80:491–503

    Article  PubMed  CAS  Google Scholar 

  15. Marini C, Picano E, Varga A, et al (1996) Cyclic variation in myocardial gray level as a marker of viability in man. A videodensitometric study. Eur Heart J 17:472–479

    Article  PubMed  CAS  Google Scholar 

  16. Dyke SH, Cohn PF, Gorlin R, et al (1974) Detection of residual myocardial function in coronary artery disease using post-extra systolic potentiation. Circulation 50:694–699

    Article  PubMed  CAS  Google Scholar 

  17. Horn HR, Teichholz LE, Cohn PF, et al (1974) Augmentation of left ventricular contraction pattern in coronary artery disease by an inotropic catecholamine. The epinephrine ventriculogram. Circulation 49:1063–1071

    Article  PubMed  CAS  Google Scholar 

  18. Dyke SH, Urschel CW, Sonnenblick EH, et al (1975) Detection of latent function in acutely ischemic myocardium in the dog: comparison of pharmacologic inotropic stimulation and postextrasystolic potentiation. Circ Res 36:490–497

    Article  PubMed  CAS  Google Scholar 

  19. Stahl LD, Aversano TR, Becker LC (1986) Selective enhancement of function of stunned myocardium by increased flow. Circulation 74:843–851

    Article  PubMed  CAS  Google Scholar 

  20. Pierard LA, De Landsheere CM, Berthe C, et al (1990) Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: comparison with positron emission tomography. J Am Coll Cardiol 15:1021–1031

    Article  PubMed  CAS  Google Scholar 

  21. Smart SC, Sawada S, Ryan T, et al (1993) Low-dose dobutamine echocardiography detects reversible dysfunction after thrombolytic therapy of acute myocardial infarction. Circulation 88:405–415

    Article  PubMed  CAS  Google Scholar 

  22. Watada H, Ito H, Oh H, et al (1994) Dobutamine stress echocardiography predicts reversible dysfunction and quantitates the extent of irreversibly damaged myocardium after reperfusion of anterior myocardial infarction. J Am Coll Cardiol 24:624–630

    Article  PubMed  CAS  Google Scholar 

  23. Poli A, Previtali M, Lanzarini L, et al (1996) Comparison of dobutamine stress echocardiography with dipyridamole stress echocardiography for detection of viable myocardium after myocardial infarction treated with thrombolysis. Heart 75:240–246

    Article  PubMed  CAS  Google Scholar 

  24. Barilla F, Ghoerghiade KP, Alam M, et al (1993) Low-dose dobutamine in patients with acute myocardial infarction identifies viable but not contractile myocardium and predicts the magnitude of improvement in wall motion abnormalities in response to coronary revascularization. Am Heart J 51:1312–1316

    Google Scholar 

  25. Zaglavara T, Haaverstad R, Cumberledge B, et al (2002) Dobutamine stress echocardiography for the detection of myocardial viability in patients with left ventricular dysfunction taking beta blockers: accuracy and optimal dose. Heart 87:329–335

    Article  PubMed  CAS  Google Scholar 

  26. Cigarroa CG, deFilippi CR, Brickner ME, et al (1993) Dobutamine stress echocardiography identifies hibernating myocardium and predicts recovery of left ventricular function after coronary revascularization. Circulation 88:430–436

    Article  PubMed  CAS  Google Scholar 

  27. La Canna G, Alfieri O, Giubbini R, et al (1994) Echocardiography during infusion of dobutamine for identification of reversibly dysfunction in patients with chronic coronary artery disease. J Am Coll Cardiol 23:617–626

    Article  PubMed  Google Scholar 

  28. Afridi I, Kleiman NS, Raizner AE, et al (1995) Dobutamine echocardiography in myocardial hibernation. Optimal dose and accuracy in predicting recovery of ventricular function after coronary angioplasty. Circulation 91:663–670

    Article  PubMed  CAS  Google Scholar 

  29. Arnese M, Cornel JH, Salustri A, et al (1995) Prediction of improvement of regional left ventricular function after surgical revascularization. A comparison of low-dose dobutamine echocardiography with 201TI single-photon emission computed tomography. Circulation 91:2748–2752

    Article  PubMed  CAS  Google Scholar 

  30. Perrone-Filardi P, Pace L, Prastaro M, et al (1995) Dobutamine echocardiography predicts improvement of hypoperfused dysfunctional myocardium after revascularization in patients with coronary artery disease. Circulation 91:2556–2565

    Article  PubMed  CAS  Google Scholar 

  31. Haque T, Furukawa T, Takahashi M, et al (1995) Identification of hibernating myocardium by dobutamine stress echocardiography: comparison with thallium-201 reinjection imaging. Am Heart J 130:553–563

    Article  PubMed  CAS  Google Scholar 

  32. Bax JJ, Cornel JH, Visser FC, et al (1996) Prediction of recovery of myocardial dysfunction after revascularization. Comparison of fluorine-18 fluorodeoxyglucose/thallium-201 SPECT, thallium-201 stress-reinjection SPECT and dobutamine echocardiography. J Am Coll Cardiol 28:558–564

    Article  PubMed  CAS  Google Scholar 

  33. Charney R, Schwinger ME, Chun J, et al (1994) Dobutamine echocardiography and resting-redistribution thallium-201 scintigraphy predicts recovery of hibernating myocardium after coronary revascularization. Am Heart J 128:864–869

    Article  PubMed  CAS  Google Scholar 

  34. Marzullo P, Parodi O, Reisenhofer B, et al (1993) Value of rest thallium-201/technetium-99m sestamibi scans and dobutamine echocardiography for detecting myocardial viability. Am J Cardiol 71:166–172

    Article  PubMed  CAS  Google Scholar 

  35. Perrone-Filardi P, Pace L, Prastaro M, et al (1996) Assessment of myocardial viability in patients with chronic coronary artery disease. Rest-4-hour-24-hour 201Tl tomography versus dobutamine echocardiography. Circulation 94:2712–2719

    Article  PubMed  CAS  Google Scholar 

  36. Panza JA, Dilsizian V, Laurienzo JM, et al (1995) Relation between thallium uptake and contractile response to dobutamine. Implications regarding myocardial viability in patients with chronic coronary artery disease and left ventricular dysfunction. Circulation 91:990–998

    Article  PubMed  CAS  Google Scholar 

  37. Baumgartner H, Porenta G, Lau YK, et al (1998) Assessment of myocardial viability by dobutamine echocardiography, positron emission tomography and thallium-201 SPECT: correlation with histopathology in explanted hearts. J Am Coll Cardiol 32:1701–1708

    Article  PubMed  CAS  Google Scholar 

  38. Pagano D, Bonser RS, Townend JN, et al (1998) Predictive value of dobutamine echocardiography and positron emission tomography in identifying hibernating myocardium in patients with postischaemic heart failure. Heart 79:281–288

    PubMed  CAS  Google Scholar 

  39. Lu C, Carlino M, Fragasso G, et al (2000) Enoximone echocardiography for predicting recovery of left ventricular dysfunction after revascularization: a novel test for detecting myocardial viability. Circulation 101:1255–1260

    Article  PubMed  CAS  Google Scholar 

  40. Picano E, Marzullo P, Gigli G, et al (1992) Identification of viable myocardium by dipyri-damole-induced improvement in regional left ventricular function assessed by echocardiography in myocardial infarction and comparison with thallium scintigraphy at rest. Am J Cardiol 70:703–710

    Article  PubMed  CAS  Google Scholar 

  41. Picano E, Ostojic M, Varga A, et al (1996) Combined low dose dipyridamole-dobutamine stress echocardiography to identify myocardial viability. J Am Coll Cardiol 27:1422–1428

    Article  PubMed  CAS  Google Scholar 

  42. Sicari R, Varga A, Picano E, et al (1999) Comparison of combination of dipyridamole and dobutamine during echocardiography with thallium scintigraphy with thallium scintigraphy to improve viability detection. Am J Cardiol 83:6–10

    Article  PubMed  CAS  Google Scholar 

  43. Hoffer EP, Dewe W, Celentano C, et al (1999) Low-level exercise echocardiography detects contractile reserve and predicts reversible dysfunction after acute myocardial infarction: comparison with low-dose dobutamine echocardiography. J Am Coll Cardiol 34:989–997

    Article  PubMed  CAS  Google Scholar 

  44. Sicari R, Picano E, Landi P, et al (1997) Prognostic value of dobutamine-atropine stress echocardiography early after acute myocardial infarction. Echo Dobutamine International Cooperative (EDIC) Study. J Am Coll Cardiol 29:254–260

    Article  PubMed  CAS  Google Scholar 

  45. Carlos ME, Smart SC, Wynsen JC, et al (1997) Dobutamine stress echocardiography for risk stratification after myocardial infarction. Circulation 95:1402–1410

    Article  PubMed  CAS  Google Scholar 

  46. Lee KS, Marwick T, Cook SA, et al (1995) Prognosis of patients with left ventricular dysfunction with and without viable myocardium after myocardial infarction: relative efficacy of medical therapy and revascularization. Circulation 90:2687–2694

    Article  Google Scholar 

  47. Picano E, Sicari R, Landi P, et al (1998) Prognostic value of myocardial viability in medically treated patients with global left ventricular dysfunction early after an acute uncomplicated myocardial infarction: a dobutamine stress echocardiographic study. Circulation 98:1078–1084

    Article  PubMed  CAS  Google Scholar 

  48. Meluzin J, Cerny J, Freiich M, et al (1998) Prognostic value of the amount of dysfunctional but viable myocardium in revascularized patients with coronary artery disease and left ventricular dysfunction. Investigators of this Multicenter Study. J Am Coll Cardiol 32:912–920

    Article  PubMed  CAS  Google Scholar 

  49. Senior R, Kaul S, Lahiri A (1999) Myocardial viability on echocardiography predicts long-term survival after revascularization in patients with ischemic congestive heart failure. J Am Coll Cardiol 33:1848–1854

    Article  PubMed  CAS  Google Scholar 

  50. Sicari R, Ripoli A, Picano E, et al, VIDA (Viability Identification with Dipyridamole Administration) Study Group (2001) The prognostic value of myocardial viability recognized by low dose dipyridamole echocardiography in patients with chronic ischaemic left ventricular dysfunction. Eur Heart J 22:837–844

    Article  PubMed  CAS  Google Scholar 

  51. Allman KC, Shaw LJ, Hachamovitch R, et al (2002) Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol 39:1151–1158

    Article  PubMed  Google Scholar 

  52. Kaul S (1995) There may be more to myocardial viability than meets the eye. Circulation 92:2790–2793

    Article  PubMed  CAS  Google Scholar 

  53. Armstrong WF (1996) “Hibernating” myocardium: asleep or part dead? J Am Coll Cardiol 28:530–535

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Picano, E. (2003). Echocardiographic Recognition of Myocardial Viability. In: Stress Echocardiography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05096-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05096-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05098-9

  • Online ISBN: 978-3-662-05096-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics