Skip to main content

Myocardial Viability

  • Chapter
Stress Echocardiography

Abstract

When facing dangerous environmental situations, most animal species react with a sympathoadrenergic fight or flight activation; others, such as the opossum, react with a vagal sympatho-inhibitory discharge or the play dead reaction, which discourages possible predators. The myocardium reacts to dangerous situations with opossum-like behavior. In several altered myocardial states (ischemia, hibernation, stunning), when the local supply–demand balance of the cell is critically endangered, the cell minimizes expenditure of energy used for development of contractile force, accounting at rest for about 60 % of the high-energy phosphates produced by cell metabolism, and utilizes whatever is left for the maintenance of cellular integrity. The echocardiographic counterpart of this cellular strategy is the regional asynergy of viable segments [1]. Both viable and necrotic segments show a depressed resting function [2], but the segmental dysfunction of viable regions can be transiently improved or even normalized by proper inotropic stimulus. From the pathophysiological and experimental viewpoint, stunning and hibernation are sharply separated entities (Table 20.1). Between fully reversible ischemia and ischemia lasting more than 15–20 min, invariably associated with necrotic phenomena, there is a blurred transition zone. Within this gray zone, ischemia is too short to cause myocardial necrosis but long enough to induce myocardial stunning: a persistent contractile dysfunction lasting for hours, days, and even weeks after the restoration of flow [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heyndrickx GR, Millard RW, McRitchie RJ et al (1975) Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 56:978–985

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Braunwald E, Kloner RA (1982) The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 66:1146–1149

    Article  CAS  PubMed  Google Scholar 

  3. Rahimtoola SH (1985) A perspective on the three large multivessel randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 72(Suppl V):V123–V135

    CAS  PubMed  Google Scholar 

  4. Braunwald E, Rutherford JD (1986) Reversible ischemic left ventricular dysfunction: evidence for “hibernating myocardium”. J Am Coll Cardiol 56:978–985

    Google Scholar 

  5. Rahimtoola SH (1989) The hibernating myocardium. Am Heart J 117:211–220

    Article  CAS  PubMed  Google Scholar 

  6. Flameng W, Suy R, Schwartz F et al (1981) Ultrastructural correlates of left ventricular contraction abnormalities in patients with chronic ischemic heart disease: determinants of reversible segmental asynergy post-revascularization surgery. Am Heart J 102:846–857

    Article  CAS  PubMed  Google Scholar 

  7. Torres MA, Picano E, Parodi G et al (1997) Residual coronary reserve identifies segmental viability in patients with wall motion abnormalities. J Am Coll Cardiol 30:65–70

    Article  CAS  PubMed  Google Scholar 

  8. Gregg DE (1963) Effect of coronary perfusion pressure or coronary flow on oxygen usage of the myocardium. Circ Res 13:497–500

    Article  CAS  PubMed  Google Scholar 

  9. Salisbury PF, Cross CE, Rieben PA (1960) Influence of coronary artery pressure upon myocardial elasticity. Circ Res 8:794–800

    Article  CAS  PubMed  Google Scholar 

  10. Stahl LD, Aversano TR, Becker LC (1986) Selective enhancement of function of stunned myocardium by increased flow. Circulation 74:843–851

    Article  CAS  PubMed  Google Scholar 

  11. Bonow RO (2002) Myocardial viability and prognosis in patients with ischemic left ventricular dysfunction. J Am Coll Cardiol 39:1159–1162

    Article  PubMed  Google Scholar 

  12. Wagner A, Mahrholdt H, Holly TA et al (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–379

    Article  PubMed  Google Scholar 

  13. Faletra F, Crivellaro W, Pirelli S et al (1995) Value of transthoracic two-dimensional echocardiography in predicting viability in patients with healed Q-wave anterior wall myocardial infarction. Am J Cardiol 76:1002–1006

    Article  CAS  PubMed  Google Scholar 

  14. Cwajg JM, Cwajg E, Nagueh SF et al (2000) End-diastolic wall thickness as a predictor of recovery of function in myocardial hibernation: relation to rest-redistribution Tl-201 tomography and dobutamine stress echocardiography. J Am Coll Cardiol 35:1152–1161

    Article  CAS  PubMed  Google Scholar 

  15. Sabia PJ, Powers ER, Ragosta M et al (1992) An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction. N Engl J Med 327:1825–1831

    Article  CAS  PubMed  Google Scholar 

  16. Ragosta M, Camarano G, Kaul S et al (1994) Microvascular integrity indicates myocellular viability in patients with recent myocardial infarction. New insights using myocardial contrast echocardiography. Circulation 89:2562–2569

    Article  CAS  PubMed  Google Scholar 

  17. Ito H, Iwakura K, Oh H et al (1995) Temporal changes in myocardial perfusion patterns in patients with reperfused anterior wall myocardial infarction. Their relation to myocardial viability. Circulation 91:656–662

    Article  CAS  PubMed  Google Scholar 

  18. Bolognese L, Antoniucci D, Rovai D et al (1996) Myocardial contrast echocardiography versus dobutamine echocardiography for predicting functional recovery after acute myocardial infarction treated with primary coronary angioplasty. J Am Coll Cardiol 28:1677–1683

    Article  CAS  PubMed  Google Scholar 

  19. deFilippi CR, Willett DL, Irani WN et al (1995) Comparison of myocardial contrast echocardiography and low-dose dobutamine stress echocardiography in predicting recovery of left ventricular function after coronary revascularization in chronic ischemic heart disease. Circulation 92:2863–2868

    Article  CAS  PubMed  Google Scholar 

  20. Meza MF, Ramee S, Collins T et al (1997) Knowledge of perfusion and contractile reserve improves the predictive value of recovery of regional myocardial function postrevascularization: a study using the combination of myocardial contrast echocardiography and dobutamine echocardiography. Circulation 96:3459–3465

    Article  CAS  PubMed  Google Scholar 

  21. Balcells E, Powers ER, Lepper W et al (2003) Detection of myocardial viability by contrast echocardiography in acute infarction predicts recovery of resting function and contractile reserve. J Am Coll Cardiol 41:827–833

    Article  PubMed  Google Scholar 

  22. Milunski MR, Mohr GA, Perez JE et al (1989) Ultrasonic tissue characterization with integrated backscatter. Acute myocardial ischemia, reperfusion, and stunned myocardium in patients. Circulation 80:491–503

    Article  CAS  PubMed  Google Scholar 

  23. Marini C, Picano E, Varga A et al (1996) Cyclic variation in myocardial gray level as a marker of viability in man. A videodensitometric study. Eur Heart J 17:472–479

    Article  CAS  PubMed  Google Scholar 

  24. Thibault H, Derumeaux G (2008) Assessment of myocardial ischemia and viability using tissue Doppler and deformation imaging: the lessons from the experimental studies. Arch Cardiovasc Dis 101:61–68

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Chan AK, Yu CM et al (2005) Strain rate imaging differentiates transmural from non-transmural myocardial infarction: a validation study using delayed-enhancement magnetic resonance imaging. J Am Coll Cardiol 46:864–871

    Article  PubMed  Google Scholar 

  26. Becker M, Lenzen A, Ocklenburg C et al (2008) Myocardial deformation imaging based on ultrasonic pixel tracking to identify reversible myocardial dysfunction. J Am Coll Cardiol 51:1473–1481

    Article  PubMed  Google Scholar 

  27. Dyke SH, Cohn PF, Gorlin R et al (1974) Detection of residual myocardial function in coronary artery disease using post-extra systolic potentiation. Circulation 50:694–699

    Article  CAS  PubMed  Google Scholar 

  28. Horn HR, Teichholz LE, Cohn PF et al (1974) Augmentation of left ventricular contraction pattern in coronary artery disease by an inotropic catecholamine. The epinephrine ventriculogram. Circulation 49:1063–1071

    Article  CAS  PubMed  Google Scholar 

  29. Dyke SH, Urschel CW, Sonnenblick EH et al (1975) Detection of latent function in acutely ischemic myocardium in the dog: comparison of pharmacologic inotropic stimulation and postextrasystolic potentiation. Circ Res 36:490–497

    Article  CAS  PubMed  Google Scholar 

  30. Pierard LA, De Landsheere CM, Berthe C et al (1990) Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: comparison with positron emission tomography. J Am Coll Cardiol 15:1021–1031

    Article  CAS  PubMed  Google Scholar 

  31. Smart SC, Sawada S, Ryan T et al (1993) Low-dose dobutamine echocardiography detects reversible dysfunction after thrombolytic therapy of acute myocardial infarction. Circulation 88:405–415

    Article  CAS  PubMed  Google Scholar 

  32. Watada H, Ito H, Oh H et al (1994) Dobutamine stress echocardiography predicts reversible dysfunction and quantitates the extent of irreversibly damaged myocardium after reperfusion of anterior myocardial infarction. J Am Coll Cardiol 24:624–630

    Article  CAS  PubMed  Google Scholar 

  33. Poli A, Previtali M, Lanzarini L et al (1996) Comparison of dobutamine stress echocardiography with dipyridamole stress echocardiography for detection of viable myocardium after myocardial infarction treated with thrombolysis. Heart 75:240–246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Barilla F, Gheorghiade KP, Alam M et al (1993) Low-dose dobutamine in patients with acute myocardial infarction identifies viable but not contractile myocardium and predicts the magnitude of improvement in wall motion abnormalities in response to coronary revascularization. Am Heart J 51:1312–1316

    Google Scholar 

  35. Zaglavara T, Haaverstad R, Cumberledge B et al (2002) Dobutamine stress echocardiography for the detection of myocardial viability in patients with left ventricular dysfunction taking beta blockers: accuracy and optimal dose. Heart 87:329–335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Cigarroa CG, deFilippi CR, Brickner ME et al (1993) Dobutamine stress echocardiography identifies hibernating myocardium and predicts recovery of left ventricular function after coronary revascularization. Circulation 88:430–436

    Article  CAS  PubMed  Google Scholar 

  37. La Canna G, Alfieri O, Giubbini R et al (1994) Echocardiography during infusion of dobutamine for identification of reversibly dysfunction in patients with chronic coronary artery disease. J Am Coll Cardiol 23:617–626

    Article  PubMed  Google Scholar 

  38. Afridi I, Kleiman NS, Raizner AE et al (1995) Dobutamine echocardiography in myocardial hibernation. Optimal dose and accuracy in predicting recovery of ventricular function after coronary angioplasty. Circulation 91:663–670

    Article  CAS  PubMed  Google Scholar 

  39. Arnese M, Cornel JH, Salustri A et al (1995) Prediction of improvement of regional left ventricular function after surgical revascularization. A comparison of low-dose dobutamine echocardiography with 201Tl single-photon emission computed tomography. Circulation 91:2748–2752

    Article  CAS  PubMed  Google Scholar 

  40. Perrone-Filardi P, Pace L, Prastaro M et al (1995) Dobutamine echocardiography predicts improvement of hypoperfused dysfunctional myocardium after revascularization in patients with coronary artery disease. Circulation 91:2556–2565

    Article  CAS  PubMed  Google Scholar 

  41. Haque T, Furukawa T, Takahashi M et al (1995) Identification of hibernating myocardium by dobutamine stress echocardiography: comparison with thallium-201 reinjection imaging. Am Heart J 130:553–563

    Article  CAS  PubMed  Google Scholar 

  42. Bax JJ, Wijns W, Cornel JH et al (1997) Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease: comparison of pooled data. J Am Coll Cardiol 30:1451–1460

    Article  CAS  PubMed  Google Scholar 

  43. Charney R, Schwinger ME, Chun J et al (1994) Dobutamine echocardiography and resting redistribution thallium-201 scintigraphy predicts recovery of hibernating myocardium after coronary revascularization. Am Heart J 128:864–869

    Article  CAS  PubMed  Google Scholar 

  44. Marzullo P, Parodi O, Reisenhofer B et al (1993) Value of rest thallium-201/technetium-99m sestamibi scans and dobutamine echocardiography for detecting myocardial viability. Am J Cardiol 71:166–172

    Article  CAS  PubMed  Google Scholar 

  45. Perrone-Filardi P, Pace L, Prastaro M et al (1996) Assessment of myocardial viability in patients with chronic coronary artery disease. Rest-4-hour-24-hour 201Tl tomography versus dobutamine echocardiography. Circulation 94:2712–2719

    Article  CAS  PubMed  Google Scholar 

  46. Panza JA, Dilsizian V, Laurienzo JM et al (1995) Relation between thallium uptake and contractile response to dobutamine. Implications regarding myocardial viability in patients with chronic coronary artery disease and left ventricular dysfunction. Circulation 91:990–998

    Article  CAS  PubMed  Google Scholar 

  47. Baumgartner H, Porenta G, Lau YK et al (1998) Assessment of myocardial viability by dobutamine echocardiography, positron emission tomography and thallium-201 SPECT: correlation with histopathology in explanted hearts. J Am Coll Cardiol 32:1701–1708

    Article  CAS  PubMed  Google Scholar 

  48. Pagano D, Bonser RS, Townend JN et al (1998) Predictive value of dobutamine echocardiography and positron emission tomography in identifying hibernating myocardium in patients with post ischaemic heart failure. Heart 79:281–288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Pierard LA (2001) Dysfunctional ischemic myocardium: implications on regional flow-function relation. Review article. Acta Cardiol 56:207–210

    Article  CAS  PubMed  Google Scholar 

  50. Wellnhofer E, Olariu A, Klein C et al (2004) Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation 109:2172–2174

    Article  PubMed  Google Scholar 

  51. Bove CM, DiMaria JM, Voros S et al (2006) Dobutamine response and myocardial infarct transmurality: functional improvement after coronary artery bypass grafting – initial experience. Radiology 240:835–841

    Article  PubMed  Google Scholar 

  52. Ramani K, Judd RM, Holly TA et al (1998) Contrast magnetic resonance imaging in the assessment of myocardial viability in patients with stable coronary artery disease and left ventricular dysfunction. Circulation 98:2687–2694

    Article  CAS  PubMed  Google Scholar 

  53. Lu C, Carlino M, Fragasso G et al (2000) Enoximone echocardiography for predicting recovery of left ventricular dysfunction after revascularization: a novel test for detecting myocardial viability. Circulation 101:1255–1260

    Article  CAS  PubMed  Google Scholar 

  54. Picano E, Marzullo P, Gigli G et al (1992) Identification of viable myocardium by dipyrida-mole- induced improvement in regional left ventricular function assessed by echocardiography in myocardial infarction and comparison with thallium scintigraphy at rest. Am J Cardiol 70:703–710

    Article  CAS  PubMed  Google Scholar 

  55. Varga A, Sicari R, Picano E et al (1996) Infra-low dose dipyridamole test. A novel dose regimen for selective assessment of myocardial viability by vasodilator stress echocardiography. Eur Heart J 17:629–634

    Article  CAS  PubMed  Google Scholar 

  56. Picano E, Ostojic M, Varga A et al (1996) Combined low dose dipyridamole-dobutamine stress echocardiography to identify myocardial viability. J Am Coll Cardiol 27:1422–1428

    Article  CAS  PubMed  Google Scholar 

  57. Sicari R, Varga A, Picano E et al (1999) Comparison of combination of dipyridamole and dobutamine during echocardiography with thallium scintigraphy with thallium scintigraphy to improve viability detection. Am J Cardiol 83:6–10

    Article  CAS  PubMed  Google Scholar 

  58. Sicari R, Ripoli A, Picano E, et al; VIDA (Viability Identification with Dipyridamole Administration) Study Group (2001) The prognostic value of myocardial viability recognized by low dose dipyridamole echocardiography in patients with chronic ischaemic left ventricular dysfunction. Eur Heart J 22:837–844

    Google Scholar 

  59. Hoffer EP, Dewe W, Celentano C et al (1999) Low-level exercise echocardiography detects contractile reserve and predicts reversible dysfunction after acute myocardial infarction: comparison with low-dose dobutamine echocardiography. J Am Coll Cardiol 34:989–997

    Article  CAS  PubMed  Google Scholar 

  60. Lancellotti P, Hoffer EP, Piérard LA (2003) Detection and clinical usefulness of a biphasic response during exercise echocardiography early after myocardial infarction. J Am Coll Cardiol 41:1142–1147

    Article  PubMed  Google Scholar 

  61. Sicari R, Picano E, Landi P et al (1997) Prognostic value of dobutamine-atropine stress echocardiography early after acute myocardial infarction. Echo Dobutamine International Cooperative (EDIC) Study. J Am Coll Cardiol 29:254–260

    Article  CAS  PubMed  Google Scholar 

  62. Carlos ME, Smart SC, Wynsen JC et al (1997) Dobutamine stress echocardiography for risk stratification after myocardial infarction. Circulation 95:1402–1410

    Article  CAS  PubMed  Google Scholar 

  63. Lee KS, Marwick T, Cook SA et al (1995) Prognosis of patients with left ventricular dysfunction with and without viable myocardium after myocardial infarction: relative efficacy of medical therapy and revascularization. Circulation 90:2687–2694

    Article  Google Scholar 

  64. Picano E, Sicari R, Landi P et al (1998) Prognostic value of myocardial viability in medically treated patients with global left ventricular dysfunction early after an acute uncomplicated myocardial infarction: a dobutamine stress echocardiographic study. Circulation 98:1078–1084

    Article  CAS  PubMed  Google Scholar 

  65. Meluzin J, Cerny J, Frelich M et al (1998) Prognostic value of the amount of dysfunctional but viable myocardium in revascularized patients with coronary artery disease and left ventricular dysfunction. Investigators of this Multicenter Study. J Am Coll Cardiol 32:912–920

    Article  CAS  PubMed  Google Scholar 

  66. Senior R, Kaul S, Lahiri A (1999) Myocardial viability on echocardiography predicts long-term survival after revascularization in patients with ischemic congestive heart failure. J Am Coll Cardiol 33:1848–1854

    Article  CAS  PubMed  Google Scholar 

  67. Cortigiani L, Sicari R, Picano E, et al; VIDA (Viability Identification with Dobutamine Administration) Study Group (2007) Dobutamine stress echocardiography and the effect of revascularization on outcome in diabetic and non-diabetic patients with chronic ischaemic left ventricular dysfunction. Eur J Heart Fail 9:1038–1043

    Google Scholar 

  68. Sicari R, Picano E, Cortigiani L, et al; VIDA (Viability Identification with Dobutamine Administration) Study Group (2003) Prognostic value of myocardial viability recognized by low-dose dobutamine echocardiography in chronic ischemic left ventricular dysfunction. Am J Cardiol 92:1263–1266

    Google Scholar 

  69. Allman KC, Shaw LJ, Hachamovitch R et al (2002) Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol 39:1151–1158

    Article  PubMed  Google Scholar 

  70. Kaul S (1995) There may be more to myocardial viability than meets the eye. Circulation 92:2790–2793

    Article  CAS  PubMed  Google Scholar 

  71. Armstrong WF (1996) “Hibernating” myocardium: asleep or part dead? J Am Coll Cardiol 28:530–535

    Article  CAS  PubMed  Google Scholar 

  72. Bolognese L, Cerisano G, Buonamici P et al (1997) Influence of infarct-zone viability on left ventricular remodeling after acute myocardial infarction. Circulation 96:3353–3359

    Article  CAS  PubMed  Google Scholar 

  73. Rizzello V, Poldermans D, Boersma E et al (2004) Opposite patterns of left ventricular remodeling after coronary revascularization in patients with ischemic cardiomyopathy: role of myocardial viability. Circulation 110:2383–2388

    Article  PubMed  Google Scholar 

  74. Chan J, Khafagi F, Young AA et al (2008) Impact of coronary revascularization and transmural extent of scar on regional left ventricular remodelling. Eur Heart J 29:1608–1617

    Article  PubMed  Google Scholar 

  75. Pennell DJ, Sechtem UP, Higgins CB, et al; Society for Cardiovascular Magnetic Resonance; Working Group on Cardiovascular Magnetic Resonance of the European Society of Cardiology (2004) Clinical indications for cardiovascular magnetic resonance [CMR]: Consensus Panel report. Eur Heart J 25:1940–1965

    Google Scholar 

  76. Picano E (2004) Sustainability of medical imaging. Educational and Debate BMJ 328:578–580

    Google Scholar 

  77. Picano E (2004) Informed consent and communication of risk from radiological and nuclear medicine examinations: how to escape from a communication inferno. BMJ Educational and Debate BMJ 329:849–851

    Google Scholar 

  78. Picano E (2003) Stress echocardiography: a historical perspective. Am J Med 114:126–130

    Article  PubMed  Google Scholar 

  79. Bedetti G, Botto N, Picano E et al (2008) Cumulative patient effective dose in cardiology. Br J Radiol 81:805–813

    Article  Google Scholar 

  80. Correia MJ, Hellies A, Picano E et al (2005) Lack of radiological awareness among physicians working in a tertiary-care cardiological centre. Int J Cardiol 105:307–311

    Article  Google Scholar 

  81. Bedetti G, Pizzi C, Picano E et al (2008) Suboptimal awareness of radiologic dose among patients undergoing cardiac stress scintigraphy. J Am Coll Radiol 5:126–131

    Article  PubMed  Google Scholar 

  82. Pellikka PA, Nagueh SF, Elhendy AA, et al; American Society of Echocardiography (2007) American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr 20:1021–1041

    Google Scholar 

  83. Sicari R, Nihoyannopoulos P, Evangelista A, et al; European Association of Echocardiography (2008) Stress echocardiography expert consensus statement: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur J Echocardiogr 9:415–437

    Google Scholar 

  84. Bonow RO, Maurer G, Lee KL, et al; STICH Trial Investigators (2011) Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med 364:1617–1625

    Google Scholar 

  85. Bello D, Farah GM, Di Luzio S et al (2003) Gadolinium cardiovascular magnetic resonance predicts reversible myocardial dysfunction and remodeling in heart failure patients undergoing beta-blocker therapy. Circulation 108:1945–1953

    Article  CAS  PubMed  Google Scholar 

  86. Cleland JG, Pennell DJ, Ray SG et al (2003) Myocardial viability as a determinant of the ejection fraction response to carvedilol in patients with heart failure (CHRISTMAS trial): randomised controlled trial. Lancet 362:14–21

    Article  CAS  PubMed  Google Scholar 

  87. Seghatol FF, Shah DJ, Di Luzio S et al (2004) Relation between contractile reserve and improvement in left ventricular function with beta blocker therapy in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 93:854–859

    Article  CAS  PubMed  Google Scholar 

  88. McMurray JJ, Adamopoulos S, Anker SD et al (2012) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012. The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 14:803–869

    Article  CAS  PubMed  Google Scholar 

  89. Yancy CW, Jessup M, Bozkurt B, et al; American College of Cardiology Foundation; American Heart Association Task Force on Practice Guidelines (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 62:e147–239

    Google Scholar 

  90. Rouleau JL, Bonow RO (2014) An approach to the rational use of revascularization in heart failure patients. Can J Cardiol 30:281–287

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Table of Contents Video Companion

Table of Contents Video Companion

  • See stress echo primer, cases number 6 by Daniele Rovai, MD, Pisa, Italy (viability by dipyridamole with intracoronary contrast echocardiography); case number 8 by prof. Albert Varga, Szeged, Hungary (biphasic response with dobutamine and dipyridamole); and case number 12 (viability test with dobutamine) by Maria Joao Andrade, Carnaxide-Lisbon, Portugal.

  • See also, in the section Nuovo Cinema Paradiso remastered, the short movie: Myocardial viability, a moonlight serenade (By Prof. Albert Varga, Szeged, Hungary).

  • Springer Extra Materials available at http://extras.springer.com/2015/978-3-319-20957-9

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Piérard, L.A., Picano, E. (2015). Myocardial Viability. In: Stress Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-319-20958-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20958-6_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20957-9

  • Online ISBN: 978-3-319-20958-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics